Rough bilinear fractional integrals with variable kernels
Jiecheng Chen , Dashan Fan
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 369 -378.
Rough bilinear fractional integrals with variable kernels
We study the rough bilinear fractional integral $\tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}}{{\left| y \right|^{n - \alpha } }}dy} ,$, where 0 < a < n, Ω is homogeneous of degree zero on the y variable and satisfies Ω ∈ L∞(ℝn)× Ls(Sn−1) for some s ⩾ 1, and Sn−1 denotes the unit sphere of ℝn. By assuming size conditions on Ω, we obtain several boundedness properties of $\tilde B_{\Omega ,\alpha } (f,g)$: $\tilde B_{\Omega ,\alpha } :L^{p_1 } \times L^{p_2 } \to L^p ,$ where $\frac{1}{p} = \frac{1}{{p_1 }} + \frac{1}{{p_2 }}\frac{\alpha }{n}.$ Our result extends a main theorem of Y. Ding and C. Lin [Math. Nachr., 2002, 246–247: 47–52].
Bilinear operator / multilinear fractional integral / variable kernel
| [1] |
|
| [2] |
|
| [3] |
Chen J, Fan D. A bilinear fractional integral on compact Lie groups. Canad Math Bull (to appear) |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Shi Y, Tao X, Zheng T. Multilinear Riesz potential on Morrey-Herz spaces with non-doubling measures. Journal of Inequalities and Applications (to appear) |
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |