Rough bilinear fractional integrals with variable kernels

Jiecheng Chen , Dashan Fan

Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 369 -378.

PDF (143KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 369 -378. DOI: 10.1007/s11464-010-0061-1
Research Article
Research articles

Rough bilinear fractional integrals with variable kernels

Author information +
History +
PDF (143KB)

Abstract

We study the rough bilinear fractional integral $\tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}}{{\left| y \right|^{n - \alpha } }}dy} ,$, where 0 < a < n, Ω is homogeneous of degree zero on the y variable and satisfies Ω ∈ L(ℝnLs(Sn−1) for some s ⩾ 1, and Sn−1 denotes the unit sphere of ℝn. By assuming size conditions on Ω, we obtain several boundedness properties of $\tilde B_{\Omega ,\alpha } (f,g)$: $\tilde B_{\Omega ,\alpha } :L^{p_1 } \times L^{p_2 } \to L^p ,$ where $\frac{1}{p} = \frac{1}{{p_1 }} + \frac{1}{{p_2 }}\frac{\alpha }{n}.$ Our result extends a main theorem of Y. Ding and C. Lin [Math. Nachr., 2002, 246–247: 47–52].

Keywords

Bilinear operator / multilinear fractional integral / variable kernel

Cite this article

Download citation ▾
Jiecheng Chen, Dashan Fan. Rough bilinear fractional integrals with variable kernels. Front. Math. China, 2010, 5(3): 369-378 DOI:10.1007/s11464-010-0061-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J., Ding Y., Fan D. On a hyper-Hilbert transform. Chinese Ann Math, Ser B, 2003, 24: 475-484.

[2]

Chen J., Fan D. A bilinear estimate. J Korean Math, 2009, 46: 609-622.

[3]

Chen J, Fan D. A bilinear fractional integral on compact Lie groups. Canad Math Bull (to appear)

[4]

Ding Y., Lin C. Rough bilinear fractional integrals. Math Nachr, 2002, 246–247: 47-52.

[5]

Ding Y., Lu S. Weighted norm inequalities for fractional integral operator with rough kernel. Canad J Math, 1998, 50: 29-39.

[6]

Grafakos L. On multilinear fractional integrals. Studia Math, 1992, 102: 49-56.

[7]

Janson S. On interpolation of multilinear operators. Lecture Notes in Math, 1988, Berlin-New York: Springer-Verlag, 290-302.

[8]

Kenig C., Stein E. M. Multilinear estimates and fractional integration. Math Research Letter, 1999, 6: 1-15.

[9]

Lu S., Ding Y., Yan D. Singular Integrals and Related Topics, 2007, Singapore: World Scientific Publishing

[10]

Muckenhoupt B., Wheeden R. Weighted norm inequalities for singular and fractional integrals. Trans Amer Math Soc, 1971, 161: 249-258.

[11]

Muckenhoupt B., Wheeden R. Weighted norm inequalities for fractional integrals. Trans Amer Math Soc, 1974, 192: 261-274.

[12]

Shi Y. Related Estimates for Some Multilinear Operators and Commutators. Master’s Thesis, 2009, Ningbo: Ningbo University.

[13]

Shi Y, Tao X, Zheng T. Multilinear Riesz potential on Morrey-Herz spaces with non-doubling measures. Journal of Inequalities and Applications (to appear)

[14]

Stein E. M. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press.

[15]

Stein E. M. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton University Press.

AI Summary AI Mindmap
PDF (143KB)

772

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/