Global existence and uniform decay of solutions for a system of wave equations with dispersive and dissipative terms

Wenjun Liu

Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 555 -574.

PDF (220KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 555 -574. DOI: 10.1007/s11464-010-0060-2
Research Article
Research articles

Global existence and uniform decay of solutions for a system of wave equations with dispersive and dissipative terms

Author information +
History +
PDF (220KB)

Abstract

In this paper, we consider a system of two coupled wave equations with dispersive and viscosity dissipative terms under Dirichlet boundary conditions. The global existence of weak solutions as well as uniform decay rates (exponential one) of the solution energy are established.

Keywords

Global existence / uniform decay / dispersive / dissipative

Cite this article

Download citation ▾
Wenjun Liu. Global existence and uniform decay of solutions for a system of wave equations with dispersive and dissipative terms. Front. Math. China, 2010, 5(3): 555-574 DOI:10.1007/s11464-010-0060-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aassila M., Cavalcanti M. M., Soriano J. A. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J Control Optim, 2000, 38(5): 1581-1602.

[2]

Alabau-Boussouira F., Cannarsa P., Sforza D. Decay estimates for second order evolution equations with memory. J Funct Anal, 2008, 254(5): 1342-1372.

[3]

Andrade D., Mognon A. Global solutions for a system of Klein-Gordon equations with memory. Bol Soc Paran Mate, Ser 3, 2003, 21(1/2): 127-136.

[4]

Ball J. Remarks on blow up and nonexistence theorems for nonlinear evolutions equations. Quart J Math Oxford, 1977, 28: 473-486.

[5]

Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math Meth Appl Sci, 2001, 24: 1043-1053.

[6]

Cavalcanti M. M., Domingos Cavalcanti V. N., Martinez P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal, 2008, 68(1): 177-193.

[7]

Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Elect J Diff Eqs, 2002, 44: 1-14.

[8]

Cavalcanti M. M., Oquendo H. P. Frictional versus viscoelastic damping in a semi-linear wave equation. SIAM J Control Optim, 2003, 42(4): 1310-1324.

[9]

Georgiev V., Todorova G. Existence of solutions of the wave equation with nonlinear damping and source terms. J Diff Eqs, 1994, 109: 295-308.

[10]

Lions J. L. Quelques Métodes De Résolution des Problèmes aux Limites Non Linéaires, 1969, Paris: Dunod.

[11]

Liu W. J. The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity. J Math Pures et Appliquees, 1998, 37: 355-386.

[12]

Liu W. J. Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Analysis, 2009, 71: 2257-2267.

[13]

Liu Y. C., Li X. Y. Some remarks on the equation utt - Δu - Δut - Δutt = f(u). Journal of Natural Science of Heilongjiang University, 2004, 21(3): 1-6.

[14]

Medeiros L. A., Milla M. M. Weak solutions for a system of nonlinear Klein-Gordon equations. Annal Matem Pura Appl, 1987, CXLVI: 173-183.

[15]

Messaoudi S. A. Blow up and global existence in a nonlinear viscoelastic wave equation. Mathematische Nachrichten, 2003, 260: 58-66.

[16]

Messaoudi S. A., Tatar N. -E. Global existence and asymptotic behavior for a non-linear viscoelastic Problem. Math Meth Sci Research J, 2003, 7(4): 136-149.

[17]

Messaoudi S. A., Tatar N. -E. Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math Meth Appl Sci, 2007, 30: 665-680.

[18]

Messaoudi S. A., Tatar N. -E. Uniform stabilization of solutions of a nonlinear system of viscoelastic equations. Applicable Analysis, 2008, 87(3): 247-263.

[19]

Santos M. L. Decay rates for solutions of a system of wave equations with memory. Elect J Diff Eq, 2002, 38: 1-17.

[20]

Segal I. E. The global Cauchy problem for relativistic scalar field with power interactions. Bull Soc Math France, 1963, 91: 129-135.

[21]

Shang Y. D. Initial boundary value problem of equation utt - Δu - Δut - Δutt = f(u). Acta Mathematicae Applicatae Sinica, 2000, 23: 385-393.

[22]

Sun F. Q., Wang M. X. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete Contin Dynam Systems, 2005, 12: 949-958.

[23]

Sun F. Q., Wang M. X. Global and blow-up solutions for a system of nonlinear hyperbolic equations with dissipative terms. Nonlinear Anal, 2006, 64: 739-761.

[24]

Vitillaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch Rational Mech Anal, 1999, 149: 155-182.

[25]

Xu R. Z., Zhao X. R., Shen J. H. Asymptotic behaviour of solution for fourth order wave equation with dispersive and dissipative terms. Appl Math Mech (Engl Ed), 2008, 29(2): 259-262.

[26]

Yu S. Q. On the strongly damped wave equation with nonlinear damping and source terms. Electron J Qual Theory Diff Equ, 2009, 39: 1-18.

[27]

Zhang H. W., Chen G. W. Asymptotic stability for a nonlinear evolution equation. Comment Math Univ Carolin, 2004, 45(1): 101-107.

[28]

Zhang J. On the standing wave in coupled non-linear Klein-Gordon equations. Math Methods Appl Sci, 2003, 26: 11-25.

AI Summary AI Mindmap
PDF (220KB)

986

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/