Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns

A. A. Hoseini , A. R. Moghaddamfar

Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 541 -553.

PDF (220KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (3) : 541 -553. DOI: 10.1007/s11464-010-0011-y
Research Article
Research articles

Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns

Author information +
History +
PDF (220KB)

Abstract

The degree pattern of a finite group M has been introduced by A. R. Moghaddamfar et al. [Algebra Colloquium, 2005, 12(3): 431–442]. A group M is called k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups having the same order and degree pattern as M. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable. In this article, we will show that the alternating groups Ap+3 for p = 23, 31, 37, 43 and 47 are OD-characterizable. Moreover, we show that the automorphism groups of these groups are 3-fold OD-characterizable. It is worth mentioning that the prime graphs associated with all these groups are connected.

Keywords

OD-characterization of finite group / degree pattern / prime graph / alternating and symmetric groups

Cite this article

Download citation ▾
A. A. Hoseini, A. R. Moghaddamfar. Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns. Front. Math. China, 2010, 5(3): 541-553 DOI:10.1007/s11464-010-0011-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aschbacher M. Finite Group Theory, 1986, Cambridge: Cambridge University Press.

[2]

Carter R. W. Simple Groups of Lie type. Pure and Applied Mathematics, Vol 28, 1972, London-New York-Sydney: John Wiley and Sons.

[3]

Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups, 1985, Oxford: Clarendon Press.

[4]

Darafsheh M. R., Moghaddamfar A. R., Zokayi A. R. A characterization of some symmetric and linear groups. Algebras Groups Geom, 2001, 18(3): 281-299.

[5]

Kleidman P., Liebeck M. The Subgroup Structure of the Finite Classical Groups, 1990, Cambridge: Cambridge University Press.

[6]

Kondratév A. S. On prime graph components of finite simple groups. Math Sb, 1989, 180(6): 787-797.

[7]

Lucido M. S. Prime graph components of finite almost simple groups. Rend Sem Mat Univ Padova, 1999, 102: 1-22.

[8]

Mazurov V. D. On the set of orders of elements of a finite group. Algebra and Logic, 1994, 33(1): 49-55.

[9]

Mazurov V. D. Characterizations of finite groups by sets of the orders of their elements. Algebra and Logic, 1997, 36(1): 23-32.

[10]

Moghaddamfar A. R., Zokayi A. R. Recognizing finite groups through order and degree pattern. Algebra Colloquium, 2008, 15(3): 449-456.

[11]

Moghaddamfar A. R., Zokayi A. R. OD-Characterization of alternating and symmetric groups of degrees 16 and 22. Front Math China, 2009, 4(4): 669-680.

[12]

Moghaddamfar A. R., Zokayi A. R. OD-Characterization of certain finite groups having connected prime graphs. Algebra Colloquium, 2010, 17(1): 121-130.

[13]

Moghaddamfar A. R., Zokayi A. R., Darafsheh M. R. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloquium, 2005, 12(3): 431-442.

[14]

Williams J. S. Prime graph components of finite groups. J Algebra, 1981, 69(2): 487-513.

[15]

Zavarnitsin A. V. Recognition of alternating groups of degrees r + 1 and r + 2 for prime r and the group of degree 16 by their element order sets. Algebra and Logic, 2000, 39(6): 370-377.

[16]

Zavarnitsin A. V., Mazurov V. D. Element orders in covering of symmetric and alternating groups. Algebra and Logic, 1999, 38(3): 159-170.

[17]

Zavarnitsine A. V. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports, 2009, 6: 112

[18]

Zhang L. C., Liu X. OD-Characterization of the projective general linear groups PGL(2, q) by their orders and degree patterns. International Journal of Algebra and Computation, 2009, 19(7): 873-889.

[19]

Zhang L. C., Shi W. J. OD-Characterization of all simple groups whose orders are less than 108. Front Math China, 2008, 3(3): 461-474.

[20]

Zhang L. C., Shi W.J. OD-Characterization of almost simple groups related to L2(49). Arch Math (Brno), 2008, 44(3): 191-199.

[21]

Zhang L. C., Shi W. J. OD-Characterization of simple K4-groups. Algebra Colloquium, 2009, 16(2): 275-282.

[22]

Zhang L. C., Shi W. J. OD-Characterization of almost simple groups related to U3(5). Acta Mathematica Sinica (English Series), 2010, 26(1): 161-168.

[23]

Zhang L C, Shi W J. OD-Characterization of the projective special linear group L2(q). Algebra Colloquium (to appear)

[24]

Zhang L. C., Shi W. J., Wang L. L., Shao C. G. OD-Characterization of A16. Journal of Suzhou University (Natural Science Edition), 2008, 24(2): 7-10.

AI Summary AI Mindmap
PDF (220KB)

733

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/