S-quasinormallity of finite groups

Zhencai Shen , Wujie Shi , Qingliang Zhang

Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 329 -339.

PDF (152KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 329 -339. DOI: 10.1007/s11464-010-0010-z
Research Article
Research articles

S-quasinormallity of finite groups

Author information +
History +
PDF (152KB)

Abstract

Let d be the smallest generator number of a finite p-group P, and let ℳd(P) = {P1,..., Pd} be a set of maximal subgroups of P such that ∩i=1 dPi=Φ(P). In this paper, the structure of a finite group G under some assumptions on the S-quasinormally embedded or SS-quasinormal subgroups in ℳd(P), for each prime p, and Sylow p-subgroups P of G is studied.

Keywords

SS-quasinormal subgroup / S-quasinormally embedded subgroup / p-nilpotent group / p-supersolvable group / formation

Cite this article

Download citation ▾
Zhencai Shen, Wujie Shi, Qingliang Zhang. S-quasinormallity of finite groups. Front. Math. China, 2010, 5(2): 329-339 DOI:10.1007/s11464-010-0010-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alejandre M. J., Ballester-Bolinches A., Cossey J. Permutable products of super-soluble groups. J Algebra, 2004, 276: 453-461.

[2]

Asaad M. On the supersolvability of finite groups. Annales Univ Sci, Budapest, 1975, XIII(18): 3-7.

[3]

Asaad M. On maximal subgroups of Sylow subgroups of finite groups. Comm Algebra, 1998, 26: 3647-3652.

[4]

Assad M., Heliel A. A. On S-quasinormally embedded subgroups of finite groups. J Pure Appl Algebra, 2001, 165: 129-135.

[5]

Ballester-Bolinches A. ℋ-normalizers and local definitions of saturated formations of finite groups. Israel J Math, 1989, 67: 312-326.

[6]

Ballester-Bolinches A., Pedraza-Aguilera M. C. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73: 335-342.

[7]

Ballester-Bolinches A., Pedraza-Aguilera M. C. Sufficient conditions for super-solubility of finite groups. J Pure Appl Algebra, 1998, 127: 113-118.

[8]

Deskins W. E. On quasinormal subgroups of finite groups. Math Z, 1963, 82: 125-132.

[9]

Guo W., Shum K. P., Skiba A. N. X-semipermutable subgroups. J Algebra, 2005, 315: 31-41.

[10]

Guo X., Guo P., Shum K. P. On semi cover-avoiding subgroups of finite groups. J Pure Appl Algebra, 2007, 209: 151-158.

[11]

Huppert B. Endliche Gruppen I, 1968, Berlin: Springer-Verlag.

[12]

Kegel O. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205-221.

[13]

Li S., Shen Z., Kong X. On SS-quasinormal subgroups of finite groups. Comm Algebra, 2008, 36: 4436-4447.

[14]

Li S., Shen Z., Liu J., Liu Xiaochun. The influence of SS-quasi-normality of some subgroups on the structure of finite groups. J Algebra, 2008, 319: 4275-4287.

[15]

Li Y., Wang Y. On S-quasinormally embedded subgroups of finite group. J of Algebra, 2004, 281: 109-123.

[16]

Robinson D. J. S. A Course in the Theory of Groups, 1982, New York: Springer-Verlag.

[17]

Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285-293.

[18]

Shaalan A. The influence of S-quasinormality of some subgroups on the structure of a finite group. Acta Math Hungar, 1990, 56: 287-293.

[19]

Shen Zhencai, Li Shirong, Shi Wujie. Finite groups with normally embedded subgroups. Journal of Group Theory (to appear)

[20]

Srinivasan S. Two sufficient conditions for the supersolvability of finite groups. Israel J Math, 1980, 35: 210-214.

[21]

Tate J. Nilpotent quotient groups. Topology, 1964, 3: 109-111.

[22]

Thompson J. G. Normal p-complements for finite groups. J Algebra, 1964, 1: 43-46.

[23]

Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 464-478.

[24]

Wei H., Wang Y. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 1998, 26: 2193-2200.

[25]

Weinstein M. Between Nilpotent and Solvable, 1982, Passaic: Polygonal Publishing House.

AI Summary AI Mindmap
PDF (152KB)

801

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/