Finite element method for a nonsmooth elliptic equation

Lili Chang , Wei Gong , Ningning Yan

Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 191 -209.

PDF (447KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (2) : 191 -209. DOI: 10.1007/s11464-010-0001-0
Research Article
Research articles

Finite element method for a nonsmooth elliptic equation

Author information +
History +
PDF (447KB)

Abstract

In this paper, we study the finite element method for a non-smooth elliptic equation. Error analysis is presented, including a priori and a posteriori error estimates as well as superconvergence analysis. We also propose two algorithms for solving the underlying equation. Numerical experiments are employed to confirm our error estimations and the efficiency of our algorithms.

Keywords

Finite element method / nonsmooth elliptic equation / a priori error estimate / a posteriori error estimate / superconvergence analysis / active set method

Cite this article

Download citation ▾
Lili Chang, Wei Gong, Ningning Yan. Finite element method for a nonsmooth elliptic equation. Front. Math. China, 2010, 5(2): 191-209 DOI:10.1007/s11464-010-0001-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aziz A. K., Stephens A. B., Suri M. Numerical methods for reaction-diffusion problems with non-differentiable kinetics. Numer Math, 1988, 51: 1-11.

[2]

Bergounioux M., Ito K., Kunisch K. Primal-dual strategy for constrained optimal control problems. SIAM J Control Optim, 1999, 37: 1176-1194.

[3]

Chen C. Finite Element Method and High Accuracy Analysis, 1982, Changsha: Hunan Science Press.

[4]

Chen X. First order conditions for discretized nonsmooth constrained optimal control problems. SIAM J Control Optim, 2004, 42: 2004-2015.

[5]

Chen X., Nashed Z., Qi L. Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J Numer Anal, 2000, 38: 1200-1216.

[6]

Ciarlet P. G. The Finite Element Methods for Elliptic Problems, 1978, Amsterdam: North Holland.

[7]

Clément Ph. Approximation by finite element functions using local regularization. RAIRO Anal Numer, 1975, 9: 77-84.

[8]

Hinze M. A variational discretization concept in control constrained optimization: the linear-quadratic case. J Computational Optimization and Applications, 2005, 30: 45-63.

[9]

Kikuchi F. Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria. J Fac Sci Univ Tokyo, Sect IA Math, 1988, 35: 77-101.

[10]

Kikuchi F., Nakazato K., Ushijima T. Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria. Japan J Appl Math, 1984, 1: 369-403.

[11]

Křížek M. Superconvergence results for linear triangular elements. Lecture Notes in Mathematics, 1986, 1192: 315-320.

[12]

Lin Q., Yan N. Structure and Analysis for Efficient Finite Element Methods, 1996, Baoding: Publishers of Hebei University.

[13]

Liu W. B., Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs, 2008, Beijing: Science Press.

[14]

Scott L. R., Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483-493.

[15]

Oganesyan L. A., Rukhovetz L. A. Study of the rate of convergence of variational difference scheme for second order elliptic equations in two-dimensional field with a smooth boundary. USSR Comput Math Math Phy, 1969, 9: 158-183.

[16]

Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement, 1996, London: Wiley-Teubner.

[17]

Yan N. Superconvergence analysis and a posteriori error estimation in finite element method, 2008, Beijing: Science Press.

[18]

Zhu Q., Lin Q. Superconvergence Theory of Finite Element Methods, 1989, Changsha: Hunan Science Press.

AI Summary AI Mindmap
PDF (447KB)

908

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/