Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra

Jiayuan Fu, Yongcun Gao

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 637-650.

PDF(163 KB)
PDF(163 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 637-650. DOI: 10.1007/s11464-009-0041-5
Research Article
Research articles

Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra

Author information +
History +

Abstract

In this paper, we give the definition of the generalized Ramond N = 2 superconformal algebras and discuss the derivation algebra and the automorphism group.

Keywords

Generalized Ramond N = 2 superconformal algebra / derivation algebra / automorphism group

Cite this article

Download citation ▾
Jiayuan Fu, Yongcun Gao. Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra. Front. Math. China, 2009, 4(4): 637‒650 https://doi.org/10.1007/s11464-009-0041-5

References

[1.]
Ademollo M., Brink L., d’Adda A., Auria R., Napolitano E., Sciuto S., del Giudice E., di Vecchia P., Ferrara S., Gliozzi F., Musto R., Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110.
CrossRef Google scholar
[2.]
Boucher W., Friedan D., Kent A. Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification. Phys Lett B, 1986, 172: 316-322.
CrossRef Google scholar
[3.]
Cheng S. L., Kac V. G. A new N = 6 superconformal algebra. Comm Math Phys, 1997, 186: 219-231.
CrossRef Google scholar
[4.]
Dörrzapf M. Superconformal Field Theories and Their Representations. Ph D Thesis. University of Cambridge, September, 1995
[5.]
Dörrzapf M. The embedding structure of unitary N = 2 minimal models. Nucl Phys, 1998, B529: 639-655.
CrossRef Google scholar
[6.]
Dobrev V. K. Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras. Phys Lett B, 1987, 186: 43-51.
CrossRef Google scholar
[7.]
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45.
CrossRef Google scholar
[8.]
Fu J., Jiang Q., Su Y. Classification of modules of intermediate series over Ramond N = 2 superconformal algebras. Journal of Mathematical Physics, 2007, 48: 043508
CrossRef Google scholar
[9.]
Jiang C. The holomorph and derivation algebra of infinite dimensional Heisenberg algebra. Chinese J Math, 1997, 17: 422-426.
[10.]
Kac V. G. Lie superalgebras. Adv Math, 1977, 26: 8-97.
CrossRef Google scholar
[11.]
Kac V. G., van de Leuer J. W. On Classification of Superconformal Algebras, 1988, Singapore: World Scientific.
[12.]
Kiritsis E. Character formula and the structure of the representations of the N = 1, N = 2 superconformal algebras. Int J Mod Phys A, 1988, 3: 1871-1906.
CrossRef Google scholar
[13.]
Shen R., Jiang C. The derivation algebra and the automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra, 2006, 34: 2547-2558.
CrossRef Google scholar
[14.]
Song G., Su Y. Derivations and 2-cocycles of contact Lie algebras related to locallyfinite derivations. Comm Alg, 2004, 32(12): 4613-4631.
CrossRef Google scholar
[15.]
Su Y. Derivations of generalized Weyl algebras. Science in China, 2003, 46: 346-354.
[16.]
Su Y. Structure of Lie superalgebras of Block type related to locally finite derivations. Comm Algebra, 2003, 31: 1725-1751.
CrossRef Google scholar
[17.]
Su Y., Zhou J. Structure of the Lie algebras related to those of block. Comm Algebra, 2002, 30: 3205-3226.
CrossRef Google scholar
[18.]
Zhu L., Meng D. Some infinite dimensional complete Lie algebra. Chin Ann Math, 2000, 21A(3): 311-316.
AI Summary AI Mindmap
PDF(163 KB)

Accesses

Citations

Detail

Sections
Recommended

/