Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra

Jiayuan Fu , Yongcun Gao

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 637 -650.

PDF (163KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 637 -650. DOI: 10.1007/s11464-009-0041-5
Research Article
Research articles

Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra

Author information +
History +
PDF (163KB)

Abstract

In this paper, we give the definition of the generalized Ramond N = 2 superconformal algebras and discuss the derivation algebra and the automorphism group.

Keywords

Generalized Ramond N = 2 superconformal algebra / derivation algebra / automorphism group

Cite this article

Download citation ▾
Jiayuan Fu, Yongcun Gao. Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra. Front. Math. China, 2009, 4(4): 637-650 DOI:10.1007/s11464-009-0041-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ademollo M., Brink L., d’Adda A., Auria R., Napolitano E., Sciuto S., del Giudice E., di Vecchia P., Ferrara S., Gliozzi F., Musto R., Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110.

[2]

Boucher W., Friedan D., Kent A. Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification. Phys Lett B, 1986, 172: 316-322.

[3]

Cheng S. L., Kac V. G. A new N = 6 superconformal algebra. Comm Math Phys, 1997, 186: 219-231.

[4]

Dörrzapf M. Superconformal Field Theories and Their Representations. Ph D Thesis. University of Cambridge, September, 1995

[5]

Dörrzapf M. The embedding structure of unitary N = 2 minimal models. Nucl Phys, 1998, B529: 639-655.

[6]

Dobrev V. K. Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras. Phys Lett B, 1987, 186: 43-51.

[7]

Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45.

[8]

Fu J., Jiang Q., Su Y. Classification of modules of intermediate series over Ramond N = 2 superconformal algebras. Journal of Mathematical Physics, 2007, 48: 043508

[9]

Jiang C. The holomorph and derivation algebra of infinite dimensional Heisenberg algebra. Chinese J Math, 1997, 17: 422-426.

[10]

Kac V. G. Lie superalgebras. Adv Math, 1977, 26: 8-97.

[11]

Kac V. G., van de Leuer J. W. On Classification of Superconformal Algebras, 1988, Singapore: World Scientific.

[12]

Kiritsis E. Character formula and the structure of the representations of the N = 1, N = 2 superconformal algebras. Int J Mod Phys A, 1988, 3: 1871-1906.

[13]

Shen R., Jiang C. The derivation algebra and the automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra, 2006, 34: 2547-2558.

[14]

Song G., Su Y. Derivations and 2-cocycles of contact Lie algebras related to locallyfinite derivations. Comm Alg, 2004, 32(12): 4613-4631.

[15]

Su Y. Derivations of generalized Weyl algebras. Science in China, 2003, 46: 346-354.

[16]

Su Y. Structure of Lie superalgebras of Block type related to locally finite derivations. Comm Algebra, 2003, 31: 1725-1751.

[17]

Su Y., Zhou J. Structure of the Lie algebras related to those of block. Comm Algebra, 2002, 30: 3205-3226.

[18]

Zhu L., Meng D. Some infinite dimensional complete Lie algebra. Chin Ann Math, 2000, 21A(3): 311-316.

AI Summary AI Mindmap
PDF (163KB)

814

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/