Second Leibniz cohomology group of twisted N = 2 superconformal algebra

Huanxia Fa, Xiaoyan Zheng, Junbo Li

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 627-635.

PDF(132 KB)
PDF(132 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 627-635. DOI: 10.1007/s11464-009-0039-z
Research Article
Research articles

Second Leibniz cohomology group of twisted N = 2 superconformal algebra

Author information +
History +

Abstract

In this paper, we obtain all the Leibniz 2-cocycles of the twisted N = 2 superconformal algebra ℒ, which determine its second Leibniz cohomology group.

Keywords

Twisted N = 2 superconformal algebra / Leibniz 2-cocycle

Cite this article

Download citation ▾
Huanxia Fa, Xiaoyan Zheng, Junbo Li. Second Leibniz cohomology group of twisted N = 2 superconformal algebra. Front. Math. China, 2009, 4(4): 627‒635 https://doi.org/10.1007/s11464-009-0039-z

References

[1.]
Ademollo M., Brink L., d’Adda A., Auria R., Napolitano E., Sciuto S., del Giudice E., di Vecchia P., Ferrara S., Gliozzi F., Musto R., Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110.
CrossRef Google scholar
[2.]
Dörrzapf M., Gato-Rivera B. Singular dimensions of the N = 2 superconformal algebras II: the twisted N = 2 algebra. Comm Math Phys, 2001, 220: 263-292.
CrossRef Google scholar
[3.]
Fu J., Jiang Q., Su Y. Classification of modules of the intermediate series over Ramond N = 2 superconformal algebras. J Math Phys, 2007, 48(043508): 1-15.
[4.]
Hu N., Pei Y., Liu D. A cohomological characterization of Leibniz central extensions of Lie algebras. Proc Amer Math Soc, 2008, 136: 437-447.
CrossRef Google scholar
[5.]
Kac V. G. Lie superalgebras. Adv Math, 1977, 26: 8-97.
CrossRef Google scholar
[6.]
Kac V. G., van de Leuer J. W. On Classification of Superconformal Algebras, 1988, Singapore: World Scientific.
[7.]
Li J., Su Y. Leibniz central extension on centerless twisted Schrödinger-Virasoro algebra. Front Math China, 2008, 3: 337-344.
CrossRef Google scholar
[8.]
Liu D., Hu N. Leibniz central extensions on some infinite-dimensional Lie algebras. Comm Alg, 2004, 6: 2385-2405.
CrossRef Google scholar
[9.]
Loday J. Cut-product for Leibniz cohomology and dual Leibniz algebras. Math Scand, 1995, 77: 189-196.
[10.]
Loday J., Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)-homology. Math Ann, 1993, 296: 139-158.
CrossRef Google scholar
[11.]
Wang Q., Tan S. Leibniz central extension on a Block algebra. Alg Colloq, 2007, 4: 713-720.
AI Summary AI Mindmap
PDF(132 KB)

Accesses

Citations

Detail

Sections
Recommended

/