OD-Characterization of alternating and symmetric groups of degrees 16 and 22

A. R. Moghaddamfar , A. R. Zokayi

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 669 -680.

PDF (179KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 669 -680. DOI: 10.1007/s11464-009-0037-1
Research Article
Research articles

OD-Characterization of alternating and symmetric groups of degrees 16 and 22

Author information +
History +
PDF (179KB)

Abstract

Let G be a finite group and π(G) be the set of all prime divisors of its order. The prime graph GK(G) of G is a simple graph with vertex set π(G), and two distinct primes p, q ∈ π(G) are adjacent by an edge if and only if G has an element of order pq. For a vertex p ∈ π(G), the degree of p is denoted by deg(p) and as usual is the number of distinct vertices joined to p. If π(G) = {p1, p2,...,pk}, where p1 < p2 < ... < pk, then the degree pattern of G is defined by D(G) = (deg(p1), deg(p2),...,deg(pk)). The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying conditions |H| = |G| and D(H) = D(G). In addition, a 1-fold OD-characterizable group is simply called OD-characterizable. In the present article, we show that the alternating group A22 is OD-characterizable. We also show that the automorphism groups of the alternating groups A16 and A22, i.e., the symmetric groups S16 and S22 are 3-fold OD-characterizable. It is worth mentioning that the prime graph associated to all these groups are connected.

Keywords

OD-characterizability of a finite group / degree pattern / prime graph

Cite this article

Download citation ▾
A. R. Moghaddamfar, A. R. Zokayi. OD-Characterization of alternating and symmetric groups of degrees 16 and 22. Front. Math. China, 2009, 4(4): 669-680 DOI:10.1007/s11464-009-0037-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aschbacher M. Finite Group Theory, 1986, Cambridge: Cambridge University Press.

[2]

Carter R. W. Simple Groups of Lie type. Pure and Applied Mathematics, 1972, London-New York-Sydney: John Wiley and Sons.

[3]

Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups, 1985, Oxford: Clarendon Press.

[4]

Kleidman P., Liebeck M. The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, 1990, Cambridge: Cambridge University Press.

[5]

Kondratév A. S. On prime graph components of finite simple groups. Math Sb, 1989, 180(6): 787-797.

[6]

Lucido M. S. Prime graph components of finite almost simple groups. Rend Sem Mat Univ Padova, 1999, 102: 1-22.

[7]

Moghaddamfar A R, Rahbariyan S. More on the OD-characterizability of a finite group. Algebra Colloq (to appear)

[8]

Moghaddamfar A. R., Zokayi A. R. Recognizing finite groups through order and degree pattern. Algebra Colloq, 2008, 15(3): 449-456.

[9]

Moghaddamfar A R, Zokayi A R. OD-Characterization of certain finite groups having connected prime graphs. Algebra Colloq (to appear)

[10]

Moghaddamfar A. R., Zokayi A. R., Darafsheh M. R. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq, 2005, 12(3): 431-442.

[11]

Robinson D. J. S. A Course in the Theory of Groups, 1982, New York: Springer-Verlag.

[12]

Williams J. S. Prime graph components of finite groups. J Algebra, 1981, 69(2): 487-513.

[13]

Zavarnitsin A. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports, 2009, 6: 1-12.

[14]

Zavarnitsin A., Mazurov V. D. Element orders in covering of symmetric and alternating groups. Algebra and Logic, 1999, 38(3): 159-170.

[15]

Zhang L. C., Shi W. J. OD-Characterization of all simple groups whose orders are less than 108. Front Math China, 2008, 3(3): 461-474.

[16]

Zhang L. C., Shi W.J. OD-Characterization of almost simple groups related to L2(49). Arch Math (Brno), 2008, 44(3): 191-199.

[17]

Zhang L. C., Shi W. J. OD-Characterization of simple K4-groups. Algebra Colloq, 2009, 16(2): 275-282.

[18]

Zhang L. C., Shi W. J., Wang L. L., Shao C. G. OD-Characterization of A16. Journal of Suzhou University, 2008, 24(2): 7-10.

AI Summary AI Mindmap
PDF (179KB)

843

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/