Logarithmic Sobolev inequality and strong ergodicity for birth-death processes

Jian Wang

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 721 -726.

PDF (103KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 721 -726. DOI: 10.1007/s11464-009-0036-2
Research Article
Research articles

Logarithmic Sobolev inequality and strong ergodicity for birth-death processes

Author information +
History +
PDF (103KB)

Abstract

We give two examples to show that the strong ergodicity and the logarithmic Sobolev inequality are incomparable for ergodic birth-death processes.

Keywords

Strong ergodicity / logarithmic Sobolev inequality / birth death processes

Cite this article

Download citation ▾
Jian Wang. Logarithmic Sobolev inequality and strong ergodicity for birth-death processes. Front. Math. China, 2009, 4(4): 721-726 DOI:10.1007/s11464-009-0036-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen M. F. Chan R. A new story of ergodic theory. Studies in Advanced Mathematics, Vol 26. Applied Probability, 2002, Basel: Birkhäuser, 25-34.

[2]

Chen M. F. Eigenvalues, Inequalities and Ergodic Theory, 2005, Berlin: Springer-Verlag.

[3]

Mao Y. H. The logarithmic Sobolev inequalities for birth-death process and diffusion process on the line. Chin J Appl Prob Statis, 2002, 18: 94-100.

[4]

Mao Y. H. Strong ergodicity for Markov processes by coupling methods. J Appl Prob, 2002, 39: 839-852.

[5]

Miclo L. An example of application of discrete Hardy’s inequalities. Markov Processes Relat Fields, 1999, 5: 319-330.

[6]

Wang F. Y. Functional Inequalities, Markov Semigroups and Spectral Theory, 2004, Beijing: Science Press.

[7]

Zhang H. J., Lin X., Hou Z. T. Hou Z. Uniformly polynomial convergence for standard transition functions. Birth-Death Processes, 2000, Changsha: Hunan Science Press, 59-67.

[8]

Zhang Y. H. Strong ergodicity for continuous-time Markov chains. J Appl Prob, 2001, 38: 270-277.

AI Summary AI Mindmap
PDF (103KB)

1051

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/