Logarithmic Sobolev inequality and strong ergodicity for birth-death processes

Jian Wang

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 721-726.

PDF(103 KB)
PDF(103 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 721-726. DOI: 10.1007/s11464-009-0036-2
Research Article
Research articles

Logarithmic Sobolev inequality and strong ergodicity for birth-death processes

Author information +
History +

Abstract

We give two examples to show that the strong ergodicity and the logarithmic Sobolev inequality are incomparable for ergodic birth-death processes.

Keywords

Strong ergodicity / logarithmic Sobolev inequality / birth death processes

Cite this article

Download citation ▾
Jian Wang. Logarithmic Sobolev inequality and strong ergodicity for birth-death processes. Front. Math. China, 2009, 4(4): 721‒726 https://doi.org/10.1007/s11464-009-0036-2

References

[1.]
Chen M. F. Chan R. A new story of ergodic theory. Studies in Advanced Mathematics, Vol 26. Applied Probability, 2002, Basel: Birkhäuser, 25-34.
[2.]
Chen M. F. Eigenvalues, Inequalities and Ergodic Theory, 2005, Berlin: Springer-Verlag.
[3.]
Mao Y. H. The logarithmic Sobolev inequalities for birth-death process and diffusion process on the line. Chin J Appl Prob Statis, 2002, 18: 94-100.
[4.]
Mao Y. H. Strong ergodicity for Markov processes by coupling methods. J Appl Prob, 2002, 39: 839-852.
CrossRef Google scholar
[5.]
Miclo L. An example of application of discrete Hardy’s inequalities. Markov Processes Relat Fields, 1999, 5: 319-330.
[6.]
Wang F. Y. Functional Inequalities, Markov Semigroups and Spectral Theory, 2004, Beijing: Science Press.
[7.]
Zhang H. J., Lin X., Hou Z. T. Hou Z. Uniformly polynomial convergence for standard transition functions. Birth-Death Processes, 2000, Changsha: Hunan Science Press, 59-67.
[8.]
Zhang Y. H. Strong ergodicity for continuous-time Markov chains. J Appl Prob, 2001, 38: 270-277.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(103 KB)

Accesses

Citations

Detail

Sections
Recommended

/