Stochastic modeling of unresolved scales in complex systems

Jinqiao Duan

Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 425-436.

PDF(278 KB)
Front. Math. China All Journals
PDF(278 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 425-436. DOI: 10.1007/s11464-009-0027-3
Research Article
RESEARCH ARTICLE

Stochastic modeling of unresolved scales in complex systems

Author information +
History +

Abstract

Model uncertainties or simulation uncertainties occur in mathematical modeling of multiscale complex systems, since some mechanisms or scales are not represented (i.e., ‘unresolved’) due to a lack in our understanding of these mechanisms or limitations in computational power. The impact of these unresolved scales on the resolved scales needs to be parameterized or taken into account. A stochastic scheme is devised to take the effects of unresolved scales into account, in the context of solving nonlinear partial differential equations. An example is presented to demonstrate this strategy.

Keywords

Stochastic partial differential equation (SPDE) / stochastic modeling / impact of unresolved scales on resolved scales / model error / large eddy simulation (LES) / fractional Brownian motion (fBM)

Cite this article

Download citation ▾
Jinqiao Duan. Stochastic modeling of unresolved scales in complex systems. Front. Math. China, 2009, 4(3): 425‒436 https://doi.org/10.1007/s11464-009-0027-3
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Arnold L. Random Dynamical Systems, 1998, New York: Springer-Verlag.
[2.]
Arnold L. von Storch J. -S., Imkeller P. Hasselmann’s program visited: The analysis of stochasticity in deterministic climate models. Stochastic Climate Models, 2001, Boston: Birkhäuser, 141-158.
[3.]
Berloff P. S. Random-forcing model of the mesoscale oceanic eddies. J Fluid Mech, 2005, 529: 71-95.
CrossRef Google scholar
[4.]
Berselli L. C., Iliescu T., Layton W. J. Mathematics of Large Eddy Simulation of Turbulent Flows, 2005, Berlin: Springer-Verlag.
[5.]
Craigmile P. F. Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. J Time Series Anal, 2003, 24: 505-511.
CrossRef Google scholar
[6.]
Du A, Duan J. A stochastic approach for parameterizing unresolved scales in a system with memory. Journal of Algorithms & Computational Technology (to appear)
[7.]
Duan J., Nadiga B. Stochastic parameterization of large eddy simulation of geophysical flows. Proc American Math Soc, 2007, 135: 1187-1196.
CrossRef Google scholar
[8.]
Duncan T. E., Hu Y. Z., Pasik-Duncan B. Stochastic calculus for fractional Brownian motion. I: Theory. SIAM Journal on Control and Optimization, 2000, 38: 582-612.
CrossRef Google scholar
[9.]
Francfort G. A., Suquet P. M. Homogenization and mechanical dissipation in thermoviscoelasticity. Arch Ratinal Mech Anal, 1986, 96: 879-895.
[10.]
Garcia-Ojalvo J., Sancho J. M. Noise in Spatially Extended Systems, 1999, Berlin: Springer.
[11.]
Giorgi C., Marzocchi A., Pata V. Asymptotic behavior of a similinear problem in heat conduction with memory. NoDEA Nonl Diff Equa Appl, 1998, 5: 333-354.
CrossRef Google scholar
[12.]
Hasselmann K. Stochastic climate models: Part I. Theory. Tellus, 1976, 28: 473-485.
CrossRef Google scholar
[13.]
Horsthemke W., Lefever R. Noise-Induced Transitions, 1984, Berlin: Springer-Verlag.
[14.]
Huisinga W., Schutte C., Stuart A. M. Extracting macroscopic stochastic dynamics: Model problems. Comm. Pure Appl Math, 2003, 56: 234-269.
CrossRef Google scholar
[15.]
Just W., Kantz H., Rodenbeck C., Helm M. Stochastic modelling: replacing fast degrees of freedom by noise. J Phys, A: Math Gen, 2001, 34: 3199-3213.
CrossRef Google scholar
[16.]
Leith C. E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys Fluids A, 1990, 2: 297-299.
CrossRef Google scholar
[17.]
Lin J. W. -B., Neelin J. D. Considerations for stochastic convective parameterization. J Atmos Sci, 2002, 59(5): 959-975.
CrossRef Google scholar
[18.]
Majda A. J., Timofeyev I., Vanden-Eijnden E. Models for stochastic climate prediction. PNAS, 1999, 96: 14687-14691.
CrossRef Google scholar
[19.]
Marchenko V. A., Khruslov E. Y. Homogenization of Partial Differential Equations, 2006, Boston: Birkhäuser.
[20.]
Maslowski B, Schmalfuss B. Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stoch Anal Appl (to appear)
[21.]
Mason P. J., Thomson D. J. Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech, 1992, 242: 51-78.
CrossRef Google scholar
[22.]
Mehrabi A. R., Rassamdana H., Sahimi M. Characterization of long-range correlation in complex distributions and profiles. Physical Review E, 1997, 56: 712
CrossRef Google scholar
[23.]
Memin J., Mishura Y., Valkeila E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat & Prob Lett, 2001, 51: 197-206.
CrossRef Google scholar
[24.]
Meneveau C., Katz J. Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech, 2000, 32: 1-32.
CrossRef Google scholar
[25.]
Nualart D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemporary Mathematics, 2003, 336: 3-39.
[26.]
Palmer T. N., Shutts G. J., Hagedorn R., Doblas-Reyes F. J., Jung T., Leutbecher M. Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci, 2005, 33: 163-193.
CrossRef Google scholar
[27.]
Pasquero C., Tziperman E. Statistical parameterization of heterogeneous oceanic convection. J Phys Oceanography, 2007, 37: 214-229.
CrossRef Google scholar
[28.]
Penland C, Sura P. Sensitivity of an ocean model to “details” of stochastic forcing. In: Proc ECMWF Workshop on Representation of Subscale Processes using Stochastic-Dynamic Models. Reading, England, 6–8 June 2005
[29.]
Peters H., Jones W. E. Bottom layer turbulence in the red sea outflow plume. J Phys Oceanography, 2006, 36: 1763-1785.
CrossRef Google scholar
[30.]
Peters H, Lee C M, Orlic M, Dorman C E. Turbulence in the wintertime northern Adriatic sea under strong atmospheric forcing. J Geophys Res (to appear)
[31.]
Pipiras V., Taqqu M. S. Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion. Fractals, 2000, 8(4): 369-384.
CrossRef Google scholar
[32.]
Rozovskii B. L. Stochastic Evolution Equations, 1990, Boston: Kluwer Acad Publishers.
[33.]
Sagaut P. Large Eddy Simulation for Incompressible Flows, 2005 3 New York: Springer.
[34.]
Sardeshmukh P. Issues in stochastic parameterisation. In: Proc ECMWF Workshop on Representation of Subscale Processes using Stochastic-Dynamic Models. Reading, England, 6–8 June 2005
[35.]
Schumann U. Stochastic backscatter of turbulent energy and scalar variance by random subgrid-scale fluxes. Proc R Soc Lond A, 1995, 451: 293-318.
CrossRef Google scholar
[36.]
Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation, 2004, Philadelphia: SIAM.
[37.]
Tindel S., Tudor C. A., Viens F. Stochastic evolution equations with fractional Brownian motion. Probability Theory and Related Fields, 2003, 127(2): 186-204.
CrossRef Google scholar
[38.]
Trefethen L. N. Spectral Methods in Matlab, 2000, Philadelphia: SIAM.
[39.]
Waymire E., Duan J. Probability and Partial Differential Equations in Modern Applied Mathematics, 2005, New York: Springer-Verlag.
[40.]
Wilks D. S. Effects of stochastic parameterizations in the Lorenz’ 96 system. Q J R Meteorol Soc, 2005, 131: 389-407.
CrossRef Google scholar
[41.]
Williams P. D. Modelling climate change: the role of unresolved processes. Phil Trans R Soc A, 2005, 363: 2931-2946.
CrossRef Google scholar
[42.]
Wu J. Theory and Applications of Partial Functional Differential Equations, 1996, New York: Springer.
AI Summary AI Mindmap
PDF(278 KB)

825

Accesses

3

Citations

Detail

Sections
Recommended

/