Stable one-dimensional quasi-periodic cocycles on unitary group

Xuanji Hou

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 651 -658.

PDF (152KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 651 -658. DOI: 10.1007/s11464-009-0024-6
Research Article
Research articles

Stable one-dimensional quasi-periodic cocycles on unitary group

Author information +
History +
PDF (152KB)

Abstract

In this paper, we study the stable one-dimensional quasi-periodic C cocycles on U(N). We prove that any such cocycle on a generic irrational rotation is a limit point of reducible cocycles. The proof is based on Krikorian’s renormalization scheme and a local result of him.

Keywords

Cocycle / stable / reducible

Cite this article

Download citation ▾
Xuanji Hou. Stable one-dimensional quasi-periodic cocycles on unitary group. Front. Math. China, 2009, 4(4): 651-658 DOI:10.1007/s11464-009-0024-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avila A., Krikorian R. Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Annals of Mathematics, 2006, 164: 911-940.

[2]

Dinaburg E., Sinai Y. The one-dimensional Schrödinger equation with a quasiperiodic potential. Funct Anal Appl, 1975, 9: 279-289.

[3]

Eliasson H. Floquet solutions for the one-dimensional quasiperiodic Schrödinger equation. Comm Math Phys, 1992, 146: 447-482.

[4]

Eliasson H. Katok A., de la Llave R., Pesin Y., Weiss H. Almost reducibility of linear quasi-periodic systems. Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), 2001, Providence: Amer Math Soc, 679-705.

[5]

He H., You J. Full measure reducibility for generic one-parameter family of quasiperiodic linear systems. J Dynam Differential Equations, 2008, 20: 831-866.

[6]

Hou H., You J. The rigidity of reducibility of cocycles on SO(N,ℝ). Nonlinearity, 2008, 21: 2317-2330.

[7]

Kolmogorov A. On inequalities between the upper bounds of the successive derivatives of arbitrary function on an infinite interval. Amer Math Soc Transl, 1962, 12: 233-243.

[8]

Krikorian R. Almost everywhere reducibility of quasi-periodic equations on compact groups. Ann scient Éc Norm Sup, 1999, 32: 187-240.

[9]

Krikorian R. Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts. Astérisque, 1999, 259: 1-214.

[10]

Krikorian R. Global density of reducible quasi-periodic cocycles on $\mathbb{T}^1 $ × SU(2). Annals of Mathematics, 2001, 2: 269-326.

[11]

Moser J., Pöschel J. An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment Math Helv, 1984, 59: 39-85.

AI Summary AI Mindmap
PDF (152KB)

687

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/