Complete spacelike hypersurfaces with constant mean curvature in anti-de Sitter space

Biaogui Yang , Ximin Liu

Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 727 -737.

PDF (146KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (4) : 727 -737. DOI: 10.1007/s11464-009-0023-7
Research Article
Research articles

Complete spacelike hypersurfaces with constant mean curvature in anti-de Sitter space

Author information +
History +
PDF (146KB)

Abstract

In this paper, we investigate the complete spacelike hypersurfaces with constant mean curvature and two distinct principal curvatures in an anti-de Sitter space. We give a characterization of hyperbolic cylinder and prove the conjecture in a paper by L. F. Cao and G. X. Wei [J. Math. Anal. Appl., 2007, 329(1): 408–414].

Keywords

Anti-de Sitter space / complete spacelike hypersurface / constant mean curvature (CMC) / hyperbolic cylinder / generalized maximal principle

Cite this article

Download citation ▾
Biaogui Yang, Ximin Liu. Complete spacelike hypersurfaces with constant mean curvature in anti-de Sitter space. Front. Math. China, 2009, 4(4): 727-737 DOI:10.1007/s11464-009-0023-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe N., Koike N., Yamaguchi S. Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math J, 1987, 35: 123-136.

[2]

Alías L. J., De Almeida S. C., Brasil J. A. Hypersurfaces with constant mean curvature and two principal curvatures in SI+1. Anais da Academia Brasileira de Ciências, 2004, 76(3): 489-497.

[3]

Cao L. F., Wei G. X. A new characterization of hyperbolic cylinder in anti-de Sitter space H1 n+1(−1). J Math Anal Appl, 2007, 329(1): 408-414.

[4]

Ishihara T. Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Michigan Math J, 1988, 35: 345-352.

[5]

Li Z. Q., Xie X. H. Spacelike isoparametric hypersurfaces in Lorentzian space forms. Front Math China, 2006, 1(1): 130-137.

[6]

Montiel S. A characterization of hyperbolic cylinder in the de Sitter space. Tôhoku Math J, 1996, 48: 23-31.

[7]

Omori H. Isometric immersions of Riemannian manifolds. J Math Soc Japan, 1967, 19: 205-214.

[8]

O’Neill B. Semi-Riemannian Geometry with Applications to Relativity, 1983, New York: Academic Press.

[9]

Otsuki T. Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer J Math, 1970, 92: 145-173.

[10]

Yau S. T. Harmonic function on complete Riemannian manifolds. Comm Pure Appl Math, 1975, 28: 201-228.

AI Summary AI Mindmap
PDF (146KB)

921

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/