π-quasinormally embedded and c-supplemented subgroup of finite group

Yangming Li , Kangtai Peng

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 511 -521.

PDF (225KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 511 -521. DOI: 10.1007/s11464-008-0039-4
Research Article

π-quasinormally embedded and c-supplemented subgroup of finite group

Author information +
History +
PDF (225KB)

Abstract

Suppose that H is a subgroup of a finite group G. H is called π-quasinormal in G if it permutes with every Sylow subgroup of G; H is called π-quasinormally embedded in G provided every Sylow subgroup of H is a Sylow subgroup of some π-quasinormal subgroup of G; H is called c-supplemented in G if there exists a subgroup N of G such that G = HN and HNHG = CoreG(H). In this paper, finite groups G satisfying the condition that some kinds of subgroups of G are either π-quasinormally embedded or c-supplemented in G, are investigated, and theorems which unify some recent results are given.

Keywords

π-quasinormal subgroup / π-quasinormally embedded subgroup / c-supplemented subgroup / supersolvable group / generalized Fitting subgroup / formation

Cite this article

Download citation ▾
Yangming Li, Kangtai Peng. π-quasinormally embedded and c-supplemented subgroup of finite group. Front. Math. China, 2008, 3(4): 511-521 DOI:10.1007/s11464-008-0039-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaad M. On maximal subgroups of finite group. Comm Algebra, 1998, 26(11): 3647-3652.

[2]

Assad M., Ramadan M., Shaalan A. The influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group. Arch Math, 1991, 56: 521-527.

[3]

Ballester-Bolinches A., Pedraza-Aquilera M. C. Sufficient conditions for supersolvability of finite groups. J Pure Appl Algebra, 1998, 127: 113-118.

[4]

Ballester-Bolinches A., Wang Y., Guo X. c-supplemented subgroups of finite groups. Glasgow Math J, 2000, 42: 383-389.

[5]

Gross F. Conjugacy of odd order Hall subgroups. Bull London Math Soc, 1987, 19: 311-319.

[6]

Guo X., Shum K. P. On p-nilpotency of finite groups with some subgroups c-supplemented. Algebra Coll, 2003, 10(3): 259-266.

[7]

Huppert B. Endliche Gruppen I, 1968, Berlin: Springer-Verlag.

[8]

Huppert B., Blackburn B. Finite Groups III, 1982, Berlin, New York: Springer-Verlag.

[9]

Kegel O. Sylow-Gruppen und aubnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205-221.

[10]

Li S, Li Y. On s-quasinormal and c-normal subgroups of a finite group. Czechoslovak Math J, 2008 (in press)

[11]

Li Y. Some note on the minimal subgroups of Fitting subgroup of finite groups. J Pure Applied Algebra, 2002, 171: 289-294.

[12]

Li Y. The influence of the properties of subgroups on the structure of finite group and the relation of π-homogeneity and π′-closure of finite group. Dissertation for the Doctoral Degree, 2002, Guangzhou: Sun Yat-Sen University, 1-64.

[13]

Li Y., Wang Y. The influence of minimal subgroups on the structure of finite groups. Proc Amer Math Soc, 2003, 131: 337-341.

[14]

Li Y., Wang Y. On π-quasinormally embedded subgroups of finite group. J Algebra, 2004, 281: 109-123.

[15]

Li Y., Wang Y. The influence of the properties of maximal subgroups on the structure of a finite group. Advances Math, 2007, 36(5): 599-606.

[16]

Li Y., Wang Y., Wei H. The influence of π-quasinormality of some subgroups of a finite group. Arch Math, 2003, 81: 245-252.

[17]

Li Y., Wang Y., Wei H. On p-nilpotentcy of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298.

[18]

Ramadan M. Influence of normality on maximal subgroups of Sylow subgroups of a finite groups. Acta Math Hungar, 1992, 59(1–2): 107-110.

[19]

Robinson D. J. S. A Course in the Theory of Groups, 1993, New York-Berlin: Springer-Verlag.

[20]

Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel J Math, 1980, 35: 210-214.

[21]

Wang Y. c-normality of groups and its properties. J Algebra, 1996, 180: 954-965.

[22]

Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 467-478.

[23]

Wei H., Wang Y. The c-supplemented property of finite groups. Proc Edinb Math Soc, 2007, 50: 493-508.

[24]

Wei H., Wang Y., Li Y. On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups. Proc Amer Math Soc, 2004, 132(8): 2197-2204.

AI Summary AI Mindmap
PDF (225KB)

1002

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/