On coercivity and irregularity for some nonlinear degenerate elliptic systems

Kewei Zhang

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 599-642.

PDF(427 KB)
PDF(427 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 599-642. DOI: 10.1007/s11464-008-0036-7
Research Article

On coercivity and irregularity for some nonlinear degenerate elliptic systems

Author information +
History +

Abstract

We study the ‘universal’ strong coercivity problem for variational integrals of degenerate p-Laplacian type by mixing finitely many homogenous systems. We establish the equivalence between universal p-coercivity and a generalized notion of p-quasiconvex extreme points. We then give sufficient conditions and counterexamples for universal coercivity. In the case of noncoercive systems we give examples showing that the corresponding variational integral may have infinitely many non-trivial minimizers in W0 1,p which are nowhere C1 on their supports. We also give examples of universally p-coercive variational integrals in W0 1,p for p ⩾ with L coefficients for which uniqueminimizers under affine boundary conditions are nowhere C1.

Keywords

Degenerate p-Laplace system / measurable coefficient / universal p-strong coercivity / subspace without rank-one matrice / nowhere C1 minimizers

Cite this article

Download citation ▾
Kewei Zhang. On coercivity and irregularity for some nonlinear degenerate elliptic systems. Front. Math. China, 2008, 3(4): 599‒642 https://doi.org/10.1007/s11464-008-0036-7

References

[1.]
Adams R. A. Sobolev Spaces, 1975, New York: Academic Press.
[2.]
Astala K. Area distortions of quasiconformal mappings. Acta Math, 1994, 173: 37-60.
CrossRef Google scholar
[3.]
Astala K., Faraco D. Quasiregular mappings and Young measures. Proc Royal Soc Edin, 2002, 132A: 1045-1056.
CrossRef Google scholar
[4.]
Astala K., Iwaniec T., Saksman E. Beltrami operators in the plane. Duke Math J, 2001, 107: 27-56.
CrossRef Google scholar
[5.]
Ball J. M. Convexity conditions and existence theorems in nonlinear elasticity. Arch Rational Mech Anal, 1977, 63: 337-403.
[6.]
Ball J. M. Rascle M., Serre D., Slemrod M. A version of the fundamental theorem of Young measures. Partial Differential Equations and Continuum Models of Phase Transitions, 1989, Berlin: Springer-Verlag, 207-215.
[7.]
Bhattacharya K., Firoozye N. B., James R. D., Kohn R. V. Restrictions on Microstructures. Proc Royal Soc Edin, 1994, 124A: 843-878.
[8.]
Cellina A., Perrotta S. On a problem of potential wells. J Convex Anal, 1995, 2: 103-115.
[9.]
Ciarlet P. G. Mathematical Elasticity. Three-dimensional Elasticity, 1988, Amsterdam: North-Holland
CrossRef Google scholar
[10.]
Dacorogna B. Direct Methods in the Calculus of Variations, 1989, Berlin: Springer-Verlag.
[11.]
Dacorogna B., Marcellini P. General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Mathematica, 1997, 178: 1-37.
CrossRef Google scholar
[12.]
Dacorogna B., Marcellini P. Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, 1999, Boston: Birkhäuser.
[13.]
Dacorogna B., Pisante G. A general existence theorem for differential inclusions in the vector valued case. Port Math (NS), 2005, 62: 421-436.
[14.]
Ekeland I., Temam R. Convex Analysis and Variational Problems, 1976, Amsterdam: North-Holland.
[15.]
Evans L. C. Quasiconvexity and partial regularity in the calculus of variations. Arch Rational Mech Anal, 1986, 95: 227-252.
CrossRef Google scholar
[16.]
Faraco D., Zhong X. Quasiconvex functions and Hessian equations. Arch Ration Mech Anal, 2003, 168: 245-252.
CrossRef Google scholar
[17.]
Fonseca I., Müller S., Pedregal P. Analysis of concentration and oscillation effects generated by gradients. SIAM J Math Anal, 1998, 29: 736-756.
CrossRef Google scholar
[18.]
Giaquinta M. Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zurich, 1993, Basel: Birkhäuser Verlag.
[19.]
Gromov M. Partial Differential Relations, 1986, Berlin: Springer-Verlag.
[20.]
Iqbal Z. Variational Methods in Solid Mechanics. Ph D Thesis, University of Oxford, 1999
[21.]
Iwaniec T., Martin G. Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs, 2001, Oxford: Clarendon Press.
[22.]
Kinderlehrer D., Pedregal P. Characterizations of Young measures generated by gradients. Arch Rational Mech Anal, 1991, 115: 329-365.
CrossRef Google scholar
[23.]
Kirchheim B. Rigidity and Geometry of Microstructures. MPI for Mathematics in the Sciences Leipzig, Lecture Notes (http://www.mis.mpg.de/preprints/ln/lecture note-1603.pdf) 16. 2003
[24.]
Kondratev V. A., Oleinik O. A. Boundary-value problems for the system of elasticity theory in unbounded domains. Russian Math Survey, 1988, 43: 65-119.
CrossRef Google scholar
[25.]
Kristensen J. Lower semicontinuity in spaces of weakly differentiable functions. Math Ann, 1999, 313: 653-710.
CrossRef Google scholar
[26.]
de Leeuw K., Mirkil H. Majorations dans L des opérateurs différentiels à coefficients constants. C R Acad Sci Paris, 1962, 254: 2286-2288.
[27.]
Morrey C. B. Jr. Multiple Integrals in The Calculus of Variations, 1966, Berlin: Springer.
[28.]
Müller S. Variational Models for Microstructure and Phase Transitions. 2. Lecture Notes, 1998, Lepzig: Max-Planck-Institute for Mathematics in the Sciences.
[29.]
Müller S., Šverák V. Jost J. Attainment results for the two-well problem by convex integration. Geometric Analysis and the Calculus of Variations, 1996, Boston: International Press, 239-251.
[30.]
Müller S, Šverák V. Unexpected solutions of first and second order partial differential equations. Doc Math J DMV, Extra Vol, ICM 98, 1998, 691–702
[31.]
Müller S., Šverák V. Convex integration with constraints and applications to phase transitions and partial differential equations. J Eur Math Soc, 1999, 1: 393-422.
CrossRef Google scholar
[32.]
Müller S., Šverák V. Convex integration for Lipschitz mappings and counterexamples to regularity. Ann Math, 2003, 157: 715-742.
[33.]
Müller S., Sychev M. A. Optimal existence theorems for nonhomogeneous differential inclusions. J Funct Anal, 2001, 181: 447-475.
CrossRef Google scholar
[34.]
Ornstein D. A. Non-inequality for differential operators in the L1-norm. Arch Rational Mech Anal, 1962, 11: 40-49.
CrossRef Google scholar
[35.]
Pedregal P. Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and Their Applications, 1997, Basel: Birkhäuser Verlag.
[36.]
Rees E. G. Linear spaces of real matrices of large rank. Proc Royal Soc Edin, 1996, 126A: 147-151.
[37.]
Rockafellar R. T. Convex Analysis, 1970, Princeton: Princeton University Press.
[38.]
Stein E. M. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press.
[39.]
Stein E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton University Press.
[40.]
Šverák V. Rank one convexity does not imply quasiconvexity. Proc Royal Soc Edin, 1992, 120A: 185-189.
[41.]
Šverák V. New examples of quasiconvex functions. Arch Rational Mech Anal, 1992, 119: 293-300.
CrossRef Google scholar
[42.]
Šverák V. On the problem of two wells. Microstructure and Phase Transition, 1994, 54: 183-189.
[43.]
Sychev M. A. Comparing two methods of resolving homogeneous differential inclusions. Calc Var PDEs, 2001, 13: 213-229.
CrossRef Google scholar
[44.]
Tartar L. Knops R. J. Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, 1979, London: Pitman Press, 136-212.
[45.]
Tartar L. Some remarks on separately convex functions. Microstructure and phase transition, 1993, New York: Springer, 191-204.
[46.]
Zhang K.-W. A construction of quasiconvex functions with linear growth at infinity. Ann Sc Norm Sup Pisa, 1992, XIX: 313-326.
[47.]
Zhang K.-W. On connected subsets of M2×2 without rank-one connections. Proc Royal Soc Edin, 1997, 127A: 207-216.
[48.]
Zhang K.-W. Quasiconvex functions, SO(n) and two elastic wells. Anal Nonlin H Poincaré, 1997, 14: 759-785.
CrossRef Google scholar
[49.]
Zhang K.-W. On the structure of quasiconvex hulls. Ann Inst H Poincaré-Analyse Nonlineaire, 1998, 15: 663-686.
CrossRef Google scholar
[50.]
Zhang K.-W. Maximal extension for linear spaces of real matrices with large rank. Proc Royal Soc Edin, 2001, 131A: 1481-1491.
CrossRef Google scholar
[51.]
Zhang K.-W. Estimates of quasicovnex polytopes in the calculus of variations. J Convex Anal, 2006, 13: 37-50.
[52.]
Zhang K-W. On coercivity and regularity for linear elliptic systems. Preprint, 2008
AI Summary AI Mindmap
PDF(427 KB)

Accesses

Citations

Detail

Sections
Recommended

/