
Generalized Verma modules over some Block algebras
Yongsheng Cheng, Yucai Su
Front. Math. China ›› 2008, Vol. 3 ›› Issue (1) : 37-47.
Generalized Verma modules over some Block algebras
In this paper, a class of generalized Verma modules M(V) over some Block type Lie algebra ℬ(G) are constructed, which are induced from nontrivial simple modules V over a subalgebra of ℬ(G). The irreducibility of M(V) is determined.
Lie algebra of Block type / generalized Verma module / irreducible module
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
Mazorchuk V. The Structure of Generalized Verma Modules. Dissertation for the Doctoral Degree. Kyiv University, 1996, 5–12
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
Yue X, Su Y, Xin B. Highest weight representations of a family of Lie algebras of Block type. Acta Mathematica Sinica (English Ser) (in press)
|
[19.] |
Zhang C, Su Y. Generalized Verma module over nongraded Witt algebra. J Univ Sci Tech China (in press)
|
/
〈 |
|
〉 |