Hardy spaces via distribution spaces

Liguang Liu

Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 599-611.

PDF(211 KB)
PDF(211 KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 599-611. DOI: 10.1007/s11464-007-0036-z
Research Article

Hardy spaces via distribution spaces

Author information +
History +

Abstract

Let ℐ(ℝn) be the Schwartz class on ℝn and ℐ(ℝn) be the collection of functions ϕ ∊ ℐ(ℝn) with additional property that $\int_{\mathbb{R}^n } {x^\gamma \varphi (x)dx = 0} $ for all multiindices γ. Let (ℐ(ℝn))′ and (ℐ(ℝn))′ be their dual spaces, respectively. In this paper, it is proved that atomic Hardy spaces defined via (ℐ(ℝn))′ and (ℐ(ℝn))′ coincide with each other in some sense. As an application, we show that under the condition that the Littlewood-Paley function of f belongs to Lp(ℝn) for some p ∊ (0,1], the condition f ∊ (ℐ(ℝn))′ is equivalent to that f ∊ (ℐ(ℝn))′ and f vanishes weakly at infinity. We further discuss some new classes of distributions defined via ℐ(ℝn) and ℐ(ℝn), also including their corresponding Hardy spaces.

Keywords

Hardy space / atom / Schwartz class / distribution / Littlewood-Paley function

Cite this article

Download citation ▾
Liguang Liu. Hardy spaces via distribution spaces. Front. Math. China, 2007, 2(4): 599‒611 https://doi.org/10.1007/s11464-007-0036-z

References

[1.]
Bownik M., Ho K.-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358(4): 1469-1510.
CrossRef Google scholar
[2.]
Chang S. Y. A., Fefferman R. A continuous version of duality of H1 with BMO on the bidisc. Ann of Math, 1980, 112(2): 179-201.
CrossRef Google scholar
[3.]
Coifman R. R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274.
[4.]
Fefferman C., Stein E. M. Hp spaces of several variables. Acta Math, 1972, 129: 137-193.
CrossRef Google scholar
[5.]
Folland G. B., Stein E. M. Hardy Spaces on Homogeneous Groups, 1982, Princeton: Princeton University Press.
[6.]
Frazier M., Jawerth B., Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, 79, 1991, Providence: Amer Math Soc.
[7.]
Friedlander G., Joshi M. Introduction to the Theory of Distributions, 1998 2 Cambridge: Cambridge University Press.
[8.]
Grafakos L. Classical and Modern Fourier Analysis, 2004, Upper Saddle River: Prentice Hall.
[9.]
Han Y., Müler D., Yang D. Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math Nachr, 2006, 279: 1505-1537.
CrossRef Google scholar
[10.]
Han Y., Yang D. Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Studia Math, 2003, 156: 67-97.
CrossRef Google scholar
[11.]
Harvin V. P., Hruscev S. V., Nikol’skii N. K. Linear and Complex Variables Problem Book, 1984, Berlin: Springer.
[12.]
Latter R. H. A decomposition of Hp(ℝn) in terms of atoms. Studia Math, 1977, 62: 92-101.
[13.]
Lu S. Z. Four Lectures on Real Hp Spaces, 1995, Singapore: World Scientific.
[14.]
Stein E. M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466.
CrossRef Google scholar
[15.]
Stein E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton University Press.
[16.]
Stein E. M., Weiss G. On the theory of harmonic functions of several variables, I. The theory of Hp spaces. Acta Math, 1960, 103: 25-62.
CrossRef Google scholar
[17.]
Stein E. M., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces, 1971, Princeton: Princeton University Press.
[18.]
Torchinsky A. Real-variable Methods in Harmonic Analysis, 1986, Orlando: Academic Press.
[19.]
Uchiyama A. On the radial maximal function of distributions. Pacific J Math, 1986, 121(2): 467-483.
AI Summary AI Mindmap
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/