PDF
(211KB)
Abstract
Let ℐ(ℝn) be the Schwartz class on ℝn and ℐ∞(ℝn) be the collection of functions ϕ ∊ ℐ(ℝn) with additional property that $\int_{\mathbb{R}^n } {x^\gamma \varphi (x)dx = 0} $ for all multiindices γ. Let (ℐ(ℝn))′ and (ℐ∞(ℝn))′ be their dual spaces, respectively. In this paper, it is proved that atomic Hardy spaces defined via (ℐ(ℝn))′ and (ℐ∞(ℝn))′ coincide with each other in some sense. As an application, we show that under the condition that the Littlewood-Paley function of f belongs to Lp(ℝn) for some p ∊ (0,1], the condition f ∊ (ℐ∞(ℝn))′ is equivalent to that f ∊ (ℐ(ℝn))′ and f vanishes weakly at infinity. We further discuss some new classes of distributions defined via ℐ(ℝn) and ℐ∞(ℝn), also including their corresponding Hardy spaces.
Keywords
Hardy space
/
atom
/
Schwartz class
/
distribution
/
Littlewood-Paley function
Cite this article
Download citation ▾
Liguang Liu.
Hardy spaces via distribution spaces.
Front. Math. China, 2007, 2(4): 599-611 DOI:10.1007/s11464-007-0036-z
| [1] |
Bownik M., Ho K.-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358(4): 1469-1510.
|
| [2] |
Chang S. Y. A., Fefferman R. A continuous version of duality of H1 with BMO on the bidisc. Ann of Math, 1980, 112(2): 179-201.
|
| [3] |
Coifman R. R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274.
|
| [4] |
Fefferman C., Stein E. M. Hp spaces of several variables. Acta Math, 1972, 129: 137-193.
|
| [5] |
Folland G. B., Stein E. M. Hardy Spaces on Homogeneous Groups, 1982, Princeton: Princeton University Press.
|
| [6] |
Frazier M., Jawerth B., Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, 79, 1991, Providence: Amer Math Soc.
|
| [7] |
Friedlander G., Joshi M. Introduction to the Theory of Distributions, 1998 2 Cambridge: Cambridge University Press.
|
| [8] |
Grafakos L. Classical and Modern Fourier Analysis, 2004, Upper Saddle River: Prentice Hall.
|
| [9] |
Han Y., Müler D., Yang D. Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math Nachr, 2006, 279: 1505-1537.
|
| [10] |
Han Y., Yang D. Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Studia Math, 2003, 156: 67-97.
|
| [11] |
Harvin V. P., Hruscev S. V., Nikol’skii N. K. Linear and Complex Variables Problem Book, 1984, Berlin: Springer.
|
| [12] |
Latter R. H. A decomposition of Hp(ℝn) in terms of atoms. Studia Math, 1977, 62: 92-101.
|
| [13] |
Lu S. Z. Four Lectures on Real Hp Spaces, 1995, Singapore: World Scientific.
|
| [14] |
Stein E. M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466.
|
| [15] |
Stein E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton University Press.
|
| [16] |
Stein E. M., Weiss G. On the theory of harmonic functions of several variables, I. The theory of Hp spaces. Acta Math, 1960, 103: 25-62.
|
| [17] |
Stein E. M., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces, 1971, Princeton: Princeton University Press.
|
| [18] |
Torchinsky A. Real-variable Methods in Harmonic Analysis, 1986, Orlando: Academic Press.
|
| [19] |
Uchiyama A. On the radial maximal function of distributions. Pacific J Math, 1986, 121(2): 467-483.
|