Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2), ℍ)

Jiman Zhao , Lizhong Peng

Front. Math. China ›› 2007, Vol. 2 ›› Issue (3) : 491 -499.

PDF (164KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (3) : 491 -499. DOI: 10.1007/s11464-007-0030-5
Research Article

Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2), ℍ)

Author information +
History +
PDF (164KB)

Abstract

A series of admissible wavelets is fixed, which forms an orthonormal basis for the Hilbert space of all the quaternion-valued admissible wavelets. It turns out that their corresponding admissible wavelet transforms give an orthogonal decomposition of L2(IG(2), ℍ).

Keywords

Quaternion algebra / admissible wavelet transform / orthogonal decomposition

Cite this article

Download citation ▾
Jiman Zhao, Lizhong Peng. Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2), ℍ). Front. Math. China, 2007, 2(3): 491-499 DOI:10.1007/s11464-007-0030-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grossman A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal, 1984, 15: 723-736.

[2]

Jiang Q. T., Peng L. Z. Wavelet transform and Toeplitz-Hankel type operators. Math Scand, 1992, 70: 247-264.

[3]

Jiang Q. T., Peng L. Z. Toeplitz and Hankel type operators on the upper half-plane. Integral Equations Operator Theory, 1992, 15: 744-767.

[4]

Paul T. Functions analytic on the half plane as quantum mechanical states. J Math Phys, 1984, 25: 3252-3263.

[5]

Murenzi R. Combes J. Wavelet transforms associated to the n-dimensional Euclidean group with dilations. Wavelet, Time-Frequency Methods and Phase Space, 1989, Boston-London: Jones and Bartlett Publishers, 239-246.

[6]

Jiang Q. T. Wavelet transform and orthogonal decomposition of L2 space on the Cartan domain BDI(q = 2). Trans Amer Math Soc, 1997, 349(5): 2049-2068.

[7]

Jiang Q. T., Peng L. Z. Phase space, wavelet transform and Toeplitz-Hankel type operators. Israel J Math, 1995, 89(1–3): 157-171.

[8]

Jiang Q. T., Peng L. Z. Admissible wavelets on the Siegel domain of type one. Sci China, Ser A, 1998, 41(9): 897-909.

[9]

Brackx F., Sommen F. Clifford-Hermite wavelets in Euclidean space. J Fourier Anal Appl, 2000, 6(3): 209-310.

[10]

Brackx F., Sommen F. The continuous wavelet transform in Clifford analysis. Clifford analysis and its applications, Prague, 2000, 9–26, NATO Sci. Ser II Math Phys Chem, 2001, Dordrecht: Kluwer Acad Publ, 25

[11]

Brackx F., Sommen F. The generalized Clifford-Hermite continuous wavelet transform. Advances in Applied Clifford Algebras, 2001, 11: 219-231.

[12]

Zhao J. M., Peng L. Z. Clifford algebra-valued admissible wavelets associated with more than 2-dimensional Euclidean group with dilations, Wavelets, multiscale systems and hypercomplex analysis. Oper Theory Adv Appl, 2006, Basel: Birkhäuser, 183-190.

[13]

Zhao J. M., Peng L. Z. Quaternion-valued admissible wavelets associated with the 2-dimensional Euclidean group with dilations. J Nat Geom, 2001, 20: 21-32.

[14]

Gürlebeck k., Sprößig W. Quaternionic Analysis and Elliptic Boundary Value Problems, 1990, Basel: Birkhäuser Verlag.

[15]

Sommen F. Special functions in Clifford analysis and axial symmetry. J Math Appl, 1988, 130: 110-133.

AI Summary AI Mindmap
PDF (164KB)

900

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/