Exponential convergence rate in entropy

Mu-Fa Chen

Front. Math. China ›› 2007, Vol. 2 ›› Issue (3) : 329 -358.

PDF (951KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (3) : 329 -358. DOI: 10.1007/s11464-007-0022-5
Research Article

Exponential convergence rate in entropy

Author information +
History +
PDF (951KB)

Abstract

The exponential convergence rate in entroy is studied for symmetric forms, with a special attention to the Markov chain with a state space having two points only. Some upper and lower bounds of the rate are obtained and five examples with precise or qualitatively exact estimates are presented.

Keywords

Exponential convergence rate / spectral gap / logarithmic Sobolev constant / symmetric form / Markov chain

Cite this article

Download citation ▾
Mu-Fa Chen. Exponential convergence rate in entropy. Front. Math. China, 2007, 2(3): 329-358 DOI:10.1007/s11464-007-0022-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang S. Y., Mao Y. H. Exponential convergence rate in Boltzman-Shannon entropy. Sci Sin, Ser A, 2000, 44(3): 280-285.

[2]

Bobkov S. G., Tetali P. Modified logarithmic Sobolev inequalities in discrete settings. J Theor Prob, 2006, 19(2): 289-336.

[3]

Higuchi Y, Yosshida N. Analytic conditions and phase transition for Ising models. Lecture Notes, 1995 (in Japanese)

[4]

Diaconis P., Saloff-Coste L. Logarithmic Sobolev inequalities for finite Markov chains. Ann Appl Prob, 1996, 6(3): 695-750.

[5]

Chen M. F. Coupling, spectral gap and related topics (III). Chin Sci Bull, 1997, 42(18): 1497-1505.

[6]

Mao Y. H., Zhang S. Y. Comparison of some convergence rates for Markov process. Acta Math Sin, 2000, 43(6): 1019-1026.

[7]

Chen M. F. Logarithmic Sobolev inequality for symmetric forms. Sci Sin, Ser A, 2000, 43(6): 601-608.

[8]

Chen M. F. Eigenvalues. Inequalities, and Ergodic Theory, 2005, London: Springer.

[9]

Chen M F. A new story of ergodic theory. In: Chan R, et al, eds. Applied Probability. AMS/IP Studies in Advanced Mathematics 26, 2002, 25–34

[10]

Chen M. F. Exponential L2-convergence and L2-spectral gap for Markov processes. Acta Math Sin (New Ser), 1991, 7(1): 19-37.

[11]

Chen M. F. From Markov Chains to Non-Equilibrium Particle Systems, 2004 2nd ed. Singapore: World Scientific.

[12]

Chen M. F. Nash inequalities for general symmetric forms. Acta Math Sin (Eng Ser), 1999, 15(3): 353-370.

[13]

Lawler G. F., Sokal A. D. Bounds on the L2 spectrum for Markov chain and Markov processes: a generalization of Cheeger’s inequality. Trans Amer Math Soc, 1988, 309: 557-580.

[14]

Chen M. F., Wang F. Y. Cheeger’s inequalities for general symmetric forms and existence criteria for spectral gap. Abstract: Chin Sci Bull, 1998, 43(18): 1516-1519.

[15]

Chen M. F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337-360.

[16]

Wang F. Y. Functional inequalities for empty essential spectrum. J Funct Anal, 2000, 170: 219-245.

[17]

Wang F. Y. Sobolev type inequalities for general symmetric forms. Proc Amer Math Soc, 2001, 128(12): 3675-3682.

AI Summary AI Mindmap
PDF (951KB)

908

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/