Fractional generalized Lévy random fields as white noise functionals

Zhiyuan Huang , Peiyan Li

Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 211 -226.

PDF (225KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 211 -226. DOI: 10.1007/s11464-007-0015-4
Research Article

Fractional generalized Lévy random fields as white noise functionals

Author information +
History +
PDF (225KB)

Abstract

In this paper, we construct the fractional generalized Lévy random fields (FGLRF) as tempered white noise functionals. We find that this white noise approach is very effective in investigating the properties of these fields. Under some conditions, the fractional Lévy fields in the usual sense are obtained. In addition, we also present a method to construct the anisotropic fractional generalized Lévy random fields (AFGLRF).

Keywords

Riesz potential / tempered Lévy white noise / fractional generalized random field / anisotropic random field

Cite this article

Download citation ▾
Zhiyuan Huang, Peiyan Li. Fractional generalized Lévy random fields as white noise functionals. Front. Math. China, 2007, 2(2): 211-226 DOI:10.1007/s11464-007-0015-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gelfand I. M., Vilenkin N. Ya. Generalized Functions, Vol IV, 1964, San Diego: Academic Press, 237-301.

[2]

Dekking M., Lévy-Véhel J., Lutton E. Fractals: Theory and Applications in Engineering, 1999, London: Springer-Verlag.

[3]

Mandelbrot B., Van Ness J. Fractional Brownian motion, fractional noises and applications. SIAM Rev, 1968, 10: 422-437.

[4]

Anh V. V., Angulo J. M., Ruiz-Medina M. D. Possible long range dependence in fractional random fields. J Statis Planning and Inference, 1999, 80: 95-110.

[5]

Ruiz-Medina M. D., Angulo J. M., Anh V. V. Fractional generalized random fields on bounded domains. Stoch Anal Appl, 2003, 21: 465-492.

[6]

Lacaux C. Real harmonizable multifractional Lévy motions. Ann Inst Poincaré, Prob Stat, 2004, 40(3): 259-277.

[7]

Medina J. M., Frías B. C. On the a.s. convergence of certain random series to a fractional random field in [inline-graphic not available: see fulltext]′(Rd). Statis Proba Letters, 2005, 74: 39-49.

[8]

Albeverio S., Wu J. L. Euclidean random fields obtained by convolution from generalized white noise. J Math Phys, 1995, 36: 5217-5245.

[9]

Huang Z. Y., Li C. J. Anisotropic fractional Brownian random fields as white noise functionals. Acta Math Appl Sinica, 2005, 21: 655-660.

[10]

Huang Z. Y., Li C. J. On fractional stable processes and sheets: white noise approach. J Math Anal Appl, 2007, 325: 624-635.

[11]

Lee Y. J., Shih H. H. Analysis of generalized Lévy white noise functionals. J Funct Anal, 2004, 211: 1-70.

[12]

Lee Y. J., Shih H. H. Lévy white noise measures on infinite-dimensional spaces: Existence and characterization of the measurable support. J Funct Anal, 2006, 237: 617-633.

[13]

Nunno G. D., Øksendal B., Proske F. White noise analysis for Lévy processes. J Funct Anal, 2004, 206: 109-148.

[14]

Huang Z. Y., Li P. Y. Generalized fractional Lévy processes: A white noise approach. Stoch and Dynam, 2006, 6(4): 473-485.

[15]

Stein E. M. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press.

[16]

Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications, 1987, London: Gordon and Breach.

[17]

Itô K. Foundations of Stochastic Differential Equations in Infinite-Dimensional Spaces, 1984, Philadelphia: SIAM Press.

[18]

Sato K. Lévy Processes and Infinitely Divisible Distribution, 1999, Cambridge: Cambridge Univ Press, 145-196.

[19]

Kallenberg O. Foundations of Modern Probability, 2002, New York: Springer-Verlag, 176-198.

[20]

Applebaum D. Lévy Processes and Stochastic Calculus, 2004, Cambridge: Cambridge Univ Press, 190-245.

AI Summary AI Mindmap
PDF (225KB)

727

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/