General Hardy’s inequalities for functions nonzero on the boundary

Zhihui Chen , Yaotian Shen

Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 169 -181.

PDF (200KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 169 -181. DOI: 10.1007/s11464-007-0012-7
Research Article

General Hardy’s inequalities for functions nonzero on the boundary

Author information +
History +
PDF (200KB)

Abstract

Consider Hardy’s inequalities with general weight ϕ for functions nonzero on the boundary. By an integral identity in C1($\overline \Omega $$), define Hilbert spaces Hk 1 (Ω, ϕ) called Sobolev-Hardy spaces with weight ϕ. As a corollary of this identity, Hardy’s inequalities with weight ϕ in C1 ($\overline \Omega $$) follow. At last, by Hardy’s inequalities with weight ϕ = 1, discuss the eigenvalue problem of the Laplace-Hardy operator with critical parameter (N − 2)2/4 in H1 1 (Ω).

Keywords

Hardy’s inequality / embedding inequality / critical parameter

Cite this article

Download citation ▾
Zhihui Chen, Yaotian Shen. General Hardy’s inequalities for functions nonzero on the boundary. Front. Math. China, 2007, 2(2): 169-181 DOI:10.1007/s11464-007-0012-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hardy G. H. Note on a theorem of Hilbert. Math Zeit, 1920, 6: 314-317.

[2]

Opic B., Kufner A. Hardy-type Inequalities. Pitman Research Notes in Math, Vol 219, 1990, New York: Longman.

[3]

Ladyzhenskaya O. A. Mathematical Theory Viscous and Compressible Flow, 1969, New York: Gordon and Breach Science Publishers.

[4]

Leray J. Etude de diverses équations, intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique. J Math Pures Appl, 1933, 12: 1-82.

[5]

Shen Y. T. Weak solutions of elliptic equations of second order with singular coefficients. Advances in Math, 1964, 7: 321-327.

[6]

Peral I., Vázquez J. L. On the stability or instability of the singular solutions with exponential reaction term. Arch Rational Mech Anal, 1995, 129: 201-224.

[7]

Brézis H., Vázquez J. L. Blow-up solutions of some nonlinear elliptic problem. Revista Mat Univ Complutense Madrid, 1997, 10: 443-469.

[8]

Vázquez J. L., Zuazua E. The Hardy inequality and the asymptotic behavior of the Heat equation with an inverse-square potential. J Funct Analysis, 2000, 173: 103-153.

[9]

Filippas S., Tertikas A. Optimizing improved Hardy inequalities. J Funct Analysis, 2002, 192: 186-233.

[10]

Barbatis G., Filippas S., Tertikas A. A unified approach to improved Lp Hardy inequalities with best constants. Trans Amer Math Soc, 2004, 356: 2169-2196.

[11]

Shen Y. T., Chen Z. H. Sobolev-Hardy space with general weight. J Math Anal Appl, 2006, 320(2): 675-690.

[12]

Adimurthi Esteban M. J. An improved Hardy-Sobolev inequality in W1,p and its applications to Schrödinger operator. Nonlinear Differential Equations Appl, 2006, 12(2): 243-263.

[13]

Shen Y. T., Yao Y. X. Nonlinear elliptic equations with critical potential and critical parameter. Proc Roy Soc Edinburgh Sect A, 2006, 136: 1041-1051.

[14]

Gilbarg D., Trudinger N. Elliptic Partial Differential Equation of Second Order (Reprint of the 1998 Edition), 2001, New York: Springer-Verlag.

AI Summary AI Mindmap
PDF (200KB)

594

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/