Pure quantitative characterization of finite simple groups

Wujie Shi

Front. Math. China ›› 2007, Vol. 2 ›› Issue (1) : 123 -125.

PDF (114KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (1) : 123 -125. DOI: 10.1007/s11464-007-0008-3
Research Article

Pure quantitative characterization of finite simple groups

Author information +
History +
PDF (114KB)

Abstract

Let G be a finite group, and let πe(G) be the set of all element orders of G. In this short paper we prove that πe(Bn(q)) ≠ πe(Cn(q)) for all odd q.

Keywords

finite group / element orders / Lie type simple group

Cite this article

Download citation ▾
Wujie Shi. Pure quantitative characterization of finite simple groups. Front. Math. China, 2007, 2(1): 123-125 DOI:10.1007/s11464-007-0008-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi W. J. A new characterization of the sporadic simple groups. Group Theory, Proc of the 1987 Singapore Conf., 1989, Berlin: Walter de Gruyter, 531-540.

[2]

Shi W. J., Bi J. X. A new characterization of the alternating groups. Southeast Asian Bull Math, 1992, 16: 81-90.

[3]

Shi W. J., Bi J. X. A characteristic property for each finite projective special linear group. Lecture Notes in Math, Vol 1456, 1990, Berlin: Springer, 171-180.

[4]

Cao H. P., Shi W. J. Pure quantitative characterization of finite projective special unitary groups. Science in China, Ser A, 2002, 45: 761-772.

[5]

Xu M. C., Shi W. J. Pure quantitative characterization of finite simple groups 2Dn(q) and Dl(q) (l odd). Algebra Colloquium, 2003, 10: 427-443.

[6]

Wang L L, Shi W J. A characterization of the finite simple group Dn(q). manuscript

[7]

Shi W. J., Bi J. X. A characterization of Suzuki-Ree groups. Science in China, Ser A, 1991, 34: 14-19.

[8]

Shi W. J. Pure quantitative characterization of finite simple groups (I). Progress in Natural Science, 1994, 4: 316-326.

[9]

Zsigmondy K. Zur Theorie der Potenzreste. Monatsh Mathematical Physics, 1892, 3: 265-284.

[10]

Hestenes M. D. Singer groups. Can J Math, 1970, 22: 492-513.

[11]

Williams J. S. Prime graph components of finite groups. J Algebra, 1981, 69(2): 487-513.

[12]

Kleidman P., Liebeck M. The Subgroup Structure of the Finite Classical Groups, 1990, Cambridge: Cambridge University Press.

[13]

Feit W., Seitz G. M. On finite rational groups and related topics. Illinois J Math, 1988, 33: 103-131.

AI Summary AI Mindmap
PDF (114KB)

853

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/