Coordinates and automorphisms of polynomial and free associative algebras of rank three

Vesselin Drensky , Jie-Tai Yu

Front. Math. China ›› 2007, Vol. 2 ›› Issue (1) : 13 -46.

PDF (357KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (1) : 13 -46. DOI: 10.1007/s11464-007-0002-9
Survey Article

Coordinates and automorphisms of polynomial and free associative algebras of rank three

Author information +
History +
PDF (357KB)

Abstract

We study z-automorphisms of the polynomial algebra K[x, y, z] and the free associative algebra Kx, y, z〉 over a field K, i.e., automorphisms that fix the variable z. We survey some recent results on such automorphisms and on the corresponding coordinates. For Kx, y, z〉 we include also results about the structure of the z-tame automorphisms and algorithms that recognize z-tame automorphisms and z-tame coordinates.

Keywords

automorphisms of free and polynomial algebras / tame automorphisms / wild automorphisms / coordinates / primitive elements in free algebras

Cite this article

Download citation ▾
Vesselin Drensky, Jie-Tai Yu. Coordinates and automorphisms of polynomial and free associative algebras of rank three. Front. Math. China, 2007, 2(1): 13-46 DOI:10.1007/s11464-007-0002-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jung H. W. E. Über ganze birationale Transformationen der Ebene. J Reine und Angew Math, 1942, 184: 161-174.

[2]

van der Kulk W. On polynomial rings in two variables. Nieuw Archief voor Wiskunde (3), 1953, 1: 33-41.

[3]

Nagata M. On the Automorphism Group of k[x, y]. Lect in Math, 1972, Tokyo: Kinokuniya.

[4]

Drensky V., Yu J.-T. Tame and wild coordinates of K[z[x, y]. Trans Amer Math Soc, 2001, 353(2): 519-537.

[5]

Shpilrain V., Yu J.-T. Polynomial automorphisms and Gröbner reductions. J Algebra, 1997, 197: 546-558.

[6]

Shestakov I. P., Umirbaev U. U. The Nagata automorphism is wild. Proc Nat Acad Sci, 2003, 100(22): 12561-12563.

[7]

Shestakov I. P., Umirbaev U. U. Poisson brackets and two-generated subalgebras of rings of polynomials. J Amer Math Soc, 2004, 17: 181-196.

[8]

Shestakov I. P., Umirbaev U. U. The tame and the wild automorphisms of polynomial rings in three variables. J Amer Math Soc, 2004, 17: 197-227.

[9]

Umirbaev U. U., Yu J.-T. The strong Nagata conjecture. Proc Nat Acad Sci, 2004, 101(13): 4352-4355.

[10]

Czerniakiewicz A. J. Automorphism of a free associative algebra of rank 2. I, II. Trans Amer Math Soc, 1971, 160: 393-401.

[11]

Makar-Limanov L. G. On automorphisms of free algebra with two generators. Funk Analiz i ego Prilozh, 1970, 4(3): 107-108 Translation: Functional Anal Appl, 1970, 4: 262–263

[12]

Makar-Limanov L G. On Automorphisms of Certain Algebras. Ph D Thesis, Moscow, 1970 (in Russian)

[13]

Cohn P. M. Free Rings and Their Relations, 1985 2nd ed. New York: Acad Press.

[14]

Drensky V., Yu J.-T. Automorphisms fixing a variable of Kx, y, z〉. J Algebra, 2005, 291(1): 250-258.

[15]

Drensky V, Yu J-T. Tame automorphisms fixing a variable of free associative algebras of rank three. Preprint

[16]

Umirbaev U U. Tame and wild automorphisms of polynomial algebras and free associative algebras. Max-Planck-Institute for Mathematics, Bonn, Preprint MPIM2004-108. J Algebra (to appear)

[17]

Drensky V., Yu J.-T. The strong Anick conjecture. Proc Nat Acad Sci, 2006, 103(13): 4836-4840.

[18]

Drensky V, Yu J-T. The strong Anick conjecture is true. J Eur Math Soc (to appear)

[19]

van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture, 2000, Basel-Boston: Birkhäuser.

[20]

Mikhalev A. A., Shpilrain V., Yu J.-T. Combinatorial Methods. Free Groups, Polynomials, Free Algebras. CMS Books in Mathematics, 2004, New York: Springer.

[21]

Drensky V., Yu J.-T. Chan K. Y., Mikhalev A. A., Siu M.-K. Automorphisms and coordinates of polynomial algebras. Combinatorial and Computational Algebra, Proceedings of International Conference on Combinatorial and Computational Algebra (Hong Kong, 1999), 2000, Providence: American Mathematical Society, 179-206.

[22]

Shpilrain V., Yu J.-T. Embeddings of curves in the plane. J Algebra, 1999, 217: 668-678.

[23]

Wightwick P. G. Equivalence of polynomials under automorphisms of ℂ2. J Pure Appl Algebra, 2001, 157(2–3): 341-367.

[24]

Makar-Limanov L, Shpilrain V, Yu J-T. Equivalence of polynomials under automorphisms of K [x, y]. J Pure Appl Algebra (to appear)

[25]

Wright D. The amalgamated free product structure of GL2 (k[X1, …, Xn]) and the weak Jacobian theorem for two variables. J Pure Appl Algebra, 1978, 12: 235-251.

[26]

Tolhuizen L., Hollmann H., Kalker T. A. C. M. On the realizability of biorthogonal, m-dimensional two-band filter banks. IEEE Trans Signal Processing, 1995, 43(3): 640-648.

[27]

Park H. A realization algorithm for SL2 (R[x1, …, xm]) over the Euclidean domain. SIAM J Matrix Anal Appl, 1999, 21(1): 178-184.

[28]

Chądzyński J., Krasiński T. On the Łojasiewicz exponent at infinity for polynomial mappings of ℂ2 into ℂ2 and components of polynomial automorphisms of ℂ2. Ann Polon Math, 1992, 57(3): 291-302.

[29]

van den Essen A. Locally nilpotent derivations and their applications. III. J Pure Appl Algebra, 1995, 98(1): 15-23.

[30]

Bass H. A non-triangular action of Ga on A3. J Pure Appl Algebra, 1984, 33: 1-5.

[31]

Smith M. K. Stably tame automorphisms. J Pure Appl Algebra, 1989, 58: 209-212.

[32]

Berson J. Stably tame coordinates. J Pure Appl Algebra, 2002, 170(2–3): 131-143.

[33]

Berson J. Two-dimensional stable tameness over Noetherian domains of dimension one. J Pure Appl Algebra, 2003, 178(2): 115-129.

[34]

Edo E. Totally stably tame variables. J Algebra, 2005, 287(1): 15-31.

[35]

Daigle D., Freudenburg G. Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of k[X1, …, Xn]. J Algebra, 1998, 204: 353-371.

[36]

Edo E., Vénéreau S. Length 2 variables of A[x, y] and transfer. Polynomial Automorphisms and Related Topics (Kraków, 1999), 2001, 76(1–2): 67-76.

[37]

Berson J., van den Essen A. An algorithm to find a coordinate’s mate. J Symbolic Comput, 2003, 36(6): 835-843.

[38]

Bergman G M. Wild automorphisms of free P.I. algebras, and some new identities. Preprint

[39]

Alev J., Le Bruyn L. Automorphisms of generic 2 by 2 matrices. Perspectives in Ring Theory (Antwerp, 1987), 1988, Dordrecht: Kluwer Acad Publ, 69-83.

[40]

Drensky V., Gupta C. K. New automorphisms of generic matrix algebras and polynomial algebras. J Algebra, 1997, 194: 408-414.

[41]

Drensky V., Gupta C. K. Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras. J Algebra, 2005, 292: 393-428.

[42]

Drensky V., van den Essen A., Stefanov D. New stably tame automorphisms of polynomial algebras. J Algebra, 2000, 226: 629-638.

[43]

van den Essen A. The solution of the tame generators conjecture according to Shestakov and Umirbaev. Colloq Math, 2004, 100(2): 181-194.

[44]

Makar-Limanov L, Yu J-T. Degree estimate for subalgebras generated by two elements. J Eur Math Soc (to appear)

[45]

Freudenburg G. Local slice constructions in k[X, Y, Z]. Osaka J Math, 1997, 34: 757-767.

[46]

Freudenburg G. Actions of Ga on A3 defined by homogeneous derivations. J Pure Appl Algebra, 1998, 126: 169-181.

[47]

Dicks W. A commutator test for two elements to generate the free algebra of rank two. Bull London Math Soc, 1982, 14(1): 48-51.

[48]

Shpilrain V., Yu J.-T. On generators of polynomial algebras in two commuting or non-commuting variables. J Pure Appl Algebra, 1998, 132: 309-315.

[49]

Drensky V, Yu J-T. Automorphic equivalence problem for free associative algebras of rank two. International J Algebra and Computations (to appear)

[50]

Filippov V T, Kharchenko V K, Shestakov I P, eds. The Dniester Notebook, Unsolved Problems in the Theory of Rings and Modules. 4th ed. Novosibirsk, 1993 (in Russian)

[51]

Yagzhev A. V. The algorithmic problem of recognizing automorphisms among the endomorphisms of free associative algebras of finite rank. Sib Mat Zh, 1980, 21: 193-199 Translation: Sib Math J, 1980, 21: 142–146

[52]

Dicks W., Lewin J. A Jacobian conjecture for free associative algebras. Comm Algebra, 1982, 10: 1285-1306.

[53]

Schofield A. N. Representation of Rings over Skew Fields, 1985, Cambridge: Cambridge University Press.

[54]

Cohn P. M. On the structure of the GL2 of a ring. Inst Hautes Études Sci Publ Math, 1966, 30: 5-53.

[55]

Suslin A. A. On the structure of the special linear group over polynomial rings. Izv Akad Nauk SSSR Ser Mat, 1977, 41: 235-252 Translation: Math USSR Izv, 1977, 11: 221–239

[56]

Park H., Woodburn C. An algorithmic proof of Suslin’s stability theorem for polynomial rings. J Algebra, 1995, 178: 277-298.

[57]

Formanek E. Central polynomials for matrix rings. J Algebra, 1972, 23: 129-132.

[58]

Umirbaev U. U. On the extension of automorphisms of polynomial rings. Sibirsk Mat Zh, 1995, 36: 911-916 Translation: Sib Math J, 1995, 36: 787–791

[59]

Drensky V., Gutierrez J., Yu J.-T. Gröbner bases and the Nagata automorphism. J Pure Appl Algebra, 1999, 135: 135-153.

[60]

Makar-Limanov L G. Automorphisms of polynomial ring—a shortcut. Preprint

[61]

Drensky V. Free Algebras and PI-Algebras, 1999, Singapore: Springer-Verlag.

[62]

van den Essen A., Peretz R. Polynomial automorphisms and invariants. J Algebra, 2003, 269: 317-328.

[63]

Lamy S. Les automorphismes polynomiaux de C3 préservant une forme quadratique. C R Acad Sci Paris Sér I Math, 1999, 328: 883-886.

[64]

Lamy S. Automorphismes polynomiaux préservant une action de groupe. Bol Soc Mat Mexicana (3), 2003, 9(1): 1-19.

AI Summary AI Mindmap
PDF (357KB)

706

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/