Noncontinuous data boundary value problems for Schrödinger equation in Lipschitz domains

Xiangxing Tao

Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 589 -603.

PDF (217KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 589 -603. DOI: 10.1007/s11464-006-0030-x
Research Article

Noncontinuous data boundary value problems for Schrödinger equation in Lipschitz domains

Author information +
History +
PDF (217KB)

Abstract

The noncontinuous data boundary value problems for Schrödinger equations in Lipschitz domains and its progress are pointed out in this paper. Particularly, the Lp boundary value problems with p > 1, and Hp boundary value problems with p < 1 have been studied. Some open problems about the Besov-Sobolev and Orlicz boundary value problems are given.

Keywords

Lipschitz domain / Schrödinger equation / noncontinuous data boundary value problem / potential theory / 42B20 / 35J10

Cite this article

Download citation ▾
Xiangxing Tao. Noncontinuous data boundary value problems for Schrödinger equation in Lipschitz domains. Front. Math. China, 2006, 1(4): 589-603 DOI:10.1007/s11464-006-0030-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kenig C. Recent progress on boundary value problems on Lipschitz domains. Proceedings of Symposia in Pure Math, 1985, 43: 175-205.

[2]

Verchota G. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal, 1984, 59: 572-611.

[3]

Calderon A. P. On the Cauchy integral on Lipschitz curves, and related operators. Proc Nat Acad Sci, 1977, 74(4): 1324-1327.

[4]

Fabes E., Jodeit M. Jr Riviere N. Potential techniques for boundary value problem on C1-domains. Acta Math, 1978, 141: 165-186.

[5]

Coifmain R., McIntosh A., Meyer Y. L’integral de Cauchy definit un operateur borne sur L2 pour les courbes Lipschitziennes. Ann of Math, 1982, 116: 361-388.

[6]

Dahlberg B., Kenig C. Hardy space and the Neumann problem in Lp for Laplace’s equation in Lipschitz domains. Ann of Math, 1987, 125: 437-465.

[7]

Shen Z. On the Neumann problem for Schrödinger operators in Lipschitz domains. Indiana Univ Math J, 1994, 43(1): 143-176.

[8]

Shen Z. Lp estimates for Schrödinger operators with certain potentials. Ann Inst Fourier, 1995, 45(2): 513-546.

[9]

Fefferman C. The uncertainty principle. Bull Amer Math Soc, 1983, 9(2): 129-206.

[10]

Tao X. X. Boundary value problem for Schrödinger equation on Lipschitz’s domains. Acta Math Sin, 2000, 43(1): 167-178.

[11]

Brown R. M. The Neumann problem on Lipschitz domains in Hardy spaces of order less than one. Pacific J Math, 1995, 171(2): 389-407.

[12]

Tao X. X., Wang H. G. On The Neumann problem for the Schrödinger equations with singular potentials in Lipschitz domains. Canad J Math, 2004, 56(3): 655-672.

[13]

Fabes E., Mendez O., Mitrea M. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J Funct Anal, 1998, 159: 323-368.

AI Summary AI Mindmap
PDF (217KB)

663

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/