Riemann-Finsler geometry

Enli Guo , Xiaohuan Mo

Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 485 -498.

PDF (195KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 485 -498. DOI: 10.1007/s11464-006-0023-9
Survey Article

Riemann-Finsler geometry

Author information +
History +
PDF (195KB)

Abstract

In this paper, a survey on Riemann-Finsler geometry is given. Non-trivial examples of Finsler metrics satisfying different curvature conditions are presented. Local and global results in Finsler geometry are analyzed.

Keywords

Finsler manifold / Randers metric / constant flag curvature / 58E20

Cite this article

Download citation ▾
Enli Guo, Xiaohuan Mo. Riemann-Finsler geometry. Front. Math. China, 2006, 1(4): 485-498 DOI:10.1007/s11464-006-0023-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao D., Shen Z. On the volume of unit tangent spaces in a Finsler manifold. Results in Math, 1994, 26: 1-17.

[2]

Randers G. On an asymmetric in the four-space of general relatively. Phys Rev, 1941, 59: 195-199.

[3]

Antonelli P. L., Ingarden R. S., Matsumoto M. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, 1993, Dordrecht: Kluwer Academic Publishers.

[4]

Ingarden R. S. On the geometrically absolute optical representation in the electron microscope. Trav Soc Sci Lett Wroclaw, 1945, B45: 3-60.

[5]

Mo X. Characterization and structure of Finsler spaces with constant flag curvature. Sci China, Ser A, 1998, 41: 910-917.

[6]

Mo X. New characterizations of Riemannian spaces. Houston Journal of Mathematics, 2000, 26: 517-526.

[7]

Shen Z. On some special spaces in Finsler geometry. 1994, Preprint

[8]

Mo X. Flag curvature tensor on a closed Finsler surface. Result in Math, 1999, 36: 149-159.

[9]

Mo X. An Introduction to Finsler Geometry, 2006, Singapore: World Scientific Press.

[10]

Rademacher H. B. A sphere theorem for non-reversible Finsler metrics. A Sampler of Finsler Geometry, 2004, Cambridge: Cambridge University Press.

[11]

Chen X., Mo X., Shen Z. On the flag curvature of Finsler metrics of scalar curvature. J London Math Soc (2), 2003, 68(3): 762-780.

[12]

Mo X. On the flag curvature of a Finsler space with constant S-curvature. Houston Journal of Mathematics, 2005, 31: 131-144.

[13]

Mo X., Shen Z. On negatively curved Finsler manifolds of scalar curvature. Canada Math Bull, 2005, 48: 112-120.

[14]

Shen Z. Nonpositively curved Finsler manifolds with S-curvature. Math Z, 2005, 625–639

[15]

Mo X. Harmonic maps from Finsler manifolds. Illi J Math, 2001, 45: 1331-1345.

[16]

Mo X., Yang Y. The existence of harmonic maps from Finsler manifolds to Riemannian manifolds. Sci China, Ser A, 2005, 48: 115-130.

[17]

Shen Y., Zhang Y. Second variation of harmonic maps between Finsler manifolds. Sci China, Ser A, 2004, 47(1): 39-51.

[18]

He Q., Shen Y. Some results on harmonic maps for Finsler manifolds. Internat J Math, 2005, 16(9): 1017-1031.

[19]

Báscó S., Matsumoto M. On Finsler spaces of Douglas type, A generalization of the notion of Berwald space. Publ Math Debrecen, 1997, 51: 385-406.

[20]

Mo X., Shen Z., Yang C. Some constructions of projectively flat Finsler metrics. Sci China, Ser A, 2006, 49: 703-714.

[21]

Mo X., Yang C. The explicit construction of Finsler metrics with special curvature properties. Diff Geom and Its Appl, 2006, 24: 119-129.

[22]

Bao D., Robles C., Shen Z. Zermelo navigation on Riemannian manifolds. J Diff Geom, 2004, 66(3): 377-435.

[23]

Robles C. Geodesics in Randers spaces of constant curvature. Trans Amer Math Soc (to appear)

[24]

Zermelo E. Uber das Navigations problem bei ruhender oder veranderlicher Windverteilung. Z Argrew Math Mech, 1931, 11: 114-124.

[25]

Huang L, Mo X. On curvature decreasing property of a class of navigation problems. Publ Math Debrecen, 2007, 70 (in press)

AI Summary AI Mindmap
PDF (195KB)

1019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/