Deformation of special Lagrangian suborbifolds

Yuguang Zhang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 462 -475.

PDF (215KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 462 -475. DOI: 10.1007/s11464-006-0019-5
Research Article

Deformation of special Lagrangian suborbifolds

Author information +
History +
PDF (215KB)

Abstract

The purpose of this paper is to generalize the deformation theory of special Lagrangian submanifolds developed by Mclean and Hitchin to special Lagrangian suborbifolds.

Keywords

orbifolds / special Lagrangian / 53C38 / 53C80

Cite this article

Download citation ▾
Yuguang Zhang. Deformation of special Lagrangian suborbifolds. Front. Math. China, 2006, 1(3): 462-475 DOI:10.1007/s11464-006-0019-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strominger A., Yau S. T., Zaslow E. Mirror symmetry is T-duality. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 2001, Providence: Amer Math Soc, 333-347.

[2]

Hitchin N. The moduli space of special Lagrangian submanifolds. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 25: 503-515.

[3]

Gross M. Special Lagrangian fibrations I, II. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 2001, Providence: Amer Math Soc, 65-150.

[4]

Mclean R. C. Deformation of calibrated submanifolds. Comm Anal Geom, 1998, 6: 705-747.

[5]

Gross M., Huybrechts D., Joyce D. Calabi-Yau Manifolds and Related Geometries, 2003, Berlin: Springer.

[6]

Ma L. Moduli space of special Lagrangians in almost Kähler spaces. An Acad Bras Ci, 2001, 73(1): 1-5.

[7]

Salur S. Deformation of special lagrangian submanifolds. Communication in Contemporary Mathematics, 2000, 2(3): 365-372.

[8]

Creene B. R. Aspects of quantum geometry. Mirror Symmetry III, Proceedings of the Conference on Complex Geometry and Mirror Symmetry. Montréal, 1995, 1999, Providence: Amer Math Soc, 1-67.

[9]

Vafa C., Witten E. On orbifolds with discrete torsion. J Geom Phys, 1995, 15: 189-214.

[10]

Chen W. M., Ruan Y. B. Orbifold Gromov-Witten theory. Contemp Math, 2002, 310: 25-85.

[11]

Fukaya K., Ono K. Arnold conjecture and Gromov-Witten invariant. Topology, 1999, 38(5): 933-1048.

[12]

Satake I. The Gauss-Bonnet theorem for V-manifolds. J Math Soc Japan, 1957, 9: 464-492.

[13]

Joyce D. D. Compact Manifolds with Special Holonomy, 2000, Oxford: Oxford University Press.

[14]

Baily W. Jr. The decomposition theorem for V-manifolds. Am J Math, 1956, 37: 862-888.

[15]

Ruan W D. Generalized special Lagrangian torus fibration for Calabi-Yau hypersurfaces in toric varieties I. math.DG/0303114

AI Summary AI Mindmap
PDF (215KB)

676

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/