Analyticity of solutions of analytic non-linear general elliptic boundary value problems, and some results about linear problems

Rouhuai Wang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 382 -429.

PDF (511KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 382 -429. DOI: 10.1007/s11464-006-0016-8
Research Article

Analyticity of solutions of analytic non-linear general elliptic boundary value problems, and some results about linear problems

Author information +
History +
PDF (511KB)

Abstract

The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems. It is proved that if the corresponding first variation is regular in Lopatinskiĭ sense, then the solution is analytic up to the boundary. The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich, and hence completely generalize the previous result of C. B. Morrey. The author also discusses linear elliptic boundary value problems for systems of elliptic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients. Combining the standard Fourier transform technique with analytic continuation argument, the author constructs the Poisson and Green’s kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions. Some a priori estimates of Schauder type and Lp type are obtained.

Keywords

analytic solutions / nonlinear / singular integral operators / elliptic systems / Schauder estimates / Lp estimates / 35A08 / 35B45 / 35B65 / 35C15 / 35G15 / 35J30 / 35J40 / 35J55

Cite this article

Download citation ▾
Rouhuai Wang. Analyticity of solutions of analytic non-linear general elliptic boundary value problems, and some results about linear problems. Front. Math. China, 2006, 1(3): 382-429 DOI:10.1007/s11464-006-0016-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Volevic L. R. On the theory of boundary value problem for general elliptic systems. DAN SSSR, 1963, 148(3): 489-491.

[2]

Morrey C. B. Jv. On the analyticity of the solutions of analytic non-linear elliptic system of partial differential equations I–II. Amer J Math, 1958, 80(1): 198-218.

[3]

Agranovic M. S., Dynin A. General boundary value problem for elliptic system in multi-dimensional domain. DAN SSSR, 1962, 146(3): 511-514.

[4]

Agmon S., Donglis A., Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm Pure Appl Math, 1959, 12(4): 632-727.

[5]

Browder F. E. Estimates and existence theorems for elliptic boundary value problems. Proc Nat Acad Sci USA, 1959, 45(3): 365-372.

[6]

Browder F. E. A continuity property for adjoints of closed operators in Banach spaces, and its application to elliptic boundary value problems. Duke Math J, 1961, 28(2): 157-182.

[7]

Peetre J. Another approach to elliptic boundary value problems. Comm Pure Appl Math, 1961, 14(4): 711-731.

[8]

Slobodetskii L. N. Estimates on solutions of elliptic systems. DAN SSSR, 1958, 123: 616-619.

[9]

Calderon A. P., Zygmund A. On singular integrals. Amer J Math, 1956, 78(3): 289-309.

[10]

Calderon A. P., Zygmund A. Singular integral operators and differential equations. Amer J Math, 1957, 79: 901-921.

[11]

Malgrange B. Opérateurs intégraux singuliers et unicité du probléme de Cauchy. Matematika, 1962, 65: 87-129.

[12]

Seeley R. T. Singular integrals on compact manifold. Amer J Math, 1959, 81(3): 658-690.

[13]

Lobatinskii Y. B. On a class of boundary value problem for the system of differential equations of elliptic type with regular integrability. Ukr Mat J, 1953, 5(2): 123-151.

[14]

Wang R H, Zhang G A. Fundamental solutions to elliptic equations or systems with constant coefficients and no lower order terms and a way of constructing Poisson kernels for general model boundary value problems in half spaces. Acta Sci Natur Univ Jilin, 1962, (1): 37–44

[15]

Lions J. L., Magenes E. Problems aux. limits non homogénes (III). Ann Scuola Norm Sup Pisa, 1961, 15(1–2): 40-103.

[16]

Browder F E. A priori estimates for solutions of elliptic boundary value problems I-II-III. Proc Koninkl Nedevi Akad Westensch, 1960, 63(2); 1961, 64(1)

[17]

Hörmander L. Translation invariant operators. Acta Math, 1960, 104: 93-140.

[18]

Slobodetskii L. N., Prostranstva S. L. Sobolev spaces with fractional order and their application to the boundary value problem of partial differential equations. DAN SSSR, 1958, 118(2): 243-246.

[19]

Aronszajn N., Smith K. T. Theory of Bessel potential. Ann Inst Fourier Grenoble, 1961, 11: 385-475.

[20]

Hopf E. Uber den funktionalen inbesondere den analytische charakter der lösungen elliptischer differentialgleichungen zweiter ordnung. Math Zeit, 1932, 34: 275-317.

AI Summary AI Mindmap
PDF (511KB)

791

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/