Rigidity and mean curvature flow via harmonic Gauss maps

Yuanlong Xin

Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 325 -338.

PDF (196KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 325 -338. DOI: 10.1007/s11464-006-0012-z
Survey Article

Rigidity and mean curvature flow via harmonic Gauss maps

Author information +
History +
PDF (196KB)

Abstract

We investigate properties of harmonic Gauss maps and their applications to Lawson-Osserman’s problem, to the rigidity of space-like submanifolds in a pseudo-Euclidean space and to the mean curvature flow.

Keywords

minimal submanifold / Gauss map / mean curvature flow / 53A07 / 53A10 / 53C44

Cite this article

Download citation ▾
Yuanlong Xin. Rigidity and mean curvature flow via harmonic Gauss maps. Front. Math. China, 2006, 1(3): 325-338 DOI:10.1007/s11464-006-0012-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xavier F. The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere. Ann Math, 1981, 113: 211-214.

[2]

Fujimoto H. On the number of exceptional values of Gauss map of minimal surfaces. J Japan Math Soc, 1988, 40(2): 235-247.

[3]

Xin Y. L. Minimal Submanifolds and Related Topics, 2003, Singapore: World Scientific Publ.

[4]

Xin Y. L. Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and Their Applications, 23, 1996, Boston: Birkhäuser.

[5]

Ruh E. A., Vilms J. The tension field of the Gauss map. Trans Amer Math Soc, 1970, 149: 569-573.

[6]

Moser J. On Harnack’s theorem for elliptic differential equations. Comm Pure Appl Math, 1961, 14: 577-591.

[7]

Nitsche J. C. C. Lectures on Minimal Surfaces, 1989, Cambridge: Cambridge Univ Press.

[8]

Ecker K., Huisken G. A Bernstein result for minimal graphs of controlled growth. J Diff Geom, 1990, 31: 397-400.

[9]

Fischer-Colbrie D. Some rigidity theorems for minimal submanifolds of the sphere. Acta math, 1980, 145: 29-46.

[10]

Lawson H. B., Osserman R. Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta math, 1977, 139: 1-17.

[11]

Hildebrandt S., Jost J., Widman K. O. Harmonic mappings and minimal submanifolds. Invent Math, 1980, 62: 269-298.

[12]

Jost J., Xin Y. L. Bernstein type theorems for higher codimension Calculus. Var PDE, 1999, 9: 277-296.

[13]

Schoen R., Simon L., Yau S. T. Curvature estimates for minimal hypersurfaces. Acta Math, 1975, 134: 275-288.

[14]

Smoczyk K., Wang G. F., Xin Y. L. Bernstein type theorems with flat normal bundle. Calculus Var PDE, 2006, 26(1): 57-67.

[15]

Xin Y. L. Bernstein type theorems without graphic conditions. Asia J Math, 2005, 9(1): 31-44.

[16]

Calabi E. Smale S., Chern S. S. Examples of Bernstein problems for some non-linear equations. Global Analysis, U C Berkeley, 1968, 1970, Providence: Amer Math Soc, 223-230.

[17]

Cheng S. Y., Yau S. T. Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces. Ann Math, 1976, 104: 407-419.

[18]

Palmer B. The Gauss map of a spacelike constant mean curvature hypersurface of Minkowski space. Comment Math Helv, 1990, 65(1): 52-57.

[19]

Ishihara T. Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Michigan Math J, 1988, 35: 345-352.

[20]

Xin Y. L. On the Gauss image of a spacelike hypersurfaces with constant mean curvature in Minkowski space. Comment Math Helv, 1991, 66: 590-598.

[21]

Choi H. I., Treiberges A. Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space. J Diff Geom, 1990, 32: 775-817.

[22]

Treibergs A. E. Entire spacelike hypersurfaces of constant mean curvature in Minkowski 3-space. Invent Math, 1982, 66: 39-56.

[23]

Cao H. D., Shen Y., Zhu S. H. A Bernstein theorem for complete spacelike constant mean curvature hypersurfaces in Minkowski space. Calculus Var and PDE, 1998, 7: 141-157.

[24]

Xin Y. L., Ye R. G. Bernstein-type theorem for space-like surfaces with parallel mean curvature. J reine angew Math, 1997, 489: 189-198.

[25]

Jost J., Xin Y. L. Some aspects of the global geometry of entire space-like submanifolds. Result Math, 2001, 40: 233-245.

[26]

Aiyama R. The generalized Gauss maps of a spacelike submanifold with parallel mean curvature vector in a pseudo-Euclidean space. Japan J Math, 1994, 20(1): 93-114.

[27]

Xin Y. L. Harmonic maps of bounded symmetric domains. Math Ann, 1995, 303: 417-433.

[28]

Ecker K., Huisken G. Mean curvature evolution of entire graphs. Ann of Math (2), 1989, 130(3): 453-471.

[29]

Chen J., Li J. Mean curvature flow of surfaces in 4-manifolds. Adv Math, 2002, 163: 287-309.

[30]

Chen J., Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent Math, 2004, 156(1): 25-51.

[31]

Chen J., Tian G. Two-dimensional graphs moving by mean curvature flow. Acta Math Sinica, Engl Ser, 2000, 16: 541-548.

[32]

Smoczyk K. Harnack inequality for the Lagrangian mean curvature flow. Calculus Var PDE, 1999, 8: 247-258.

[33]

Smoczyk K. Angle theorems for Lagrangian mean curvature flow. Math Z, 2002, 240: 849-863.

[34]

Smoczyk K., Wang M.-T. Mean curvature flows for Lagrangian submanifolds with convex potentials. J Diff Geom, 2002, 62: 243-257.

[35]

Xin Y L. Mean curvature flow with convex Gauss image. DG/0512380

AI Summary AI Mindmap
PDF (196KB)

789

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/