Composition operators between area-type Nevanlinna classes

Mao-fa Wang , Pei-de Liu

Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 293 -302.

PDF (194KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 293 -302. DOI: 10.1007/s11464-006-0009-7
Research Article

Composition operators between area-type Nevanlinna classes

Author information +
History +
PDF (194KB)

Abstract

This paper is concerned with the composition operators between the area-type Nevanlinna classes. Some sufficient and necessary conditions are given in terms of the concept of Carleson measure and the standard techniques of Montel Theorem for the composition operator Cφ: Na pNa q to be bounded or compact, where 1 < pq. Moreover, the inducing maps which induce invertible or Fredholm composition operators on Na p are characterized.

Keywords

composition operator / Fredholm operator / Nevanlinna class / Carleson measure / 47B38

Cite this article

Download citation ▾
Mao-fa Wang, Pei-de Liu. Composition operators between area-type Nevanlinna classes. Front. Math. China, 2006, 1(2): 293-302 DOI:10.1007/s11464-006-0009-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shapiro J. H. Composition operators and classical function theory, 1993, New York/Berlin: Springer-Verlag.

[2]

Cowen C. C., MacCluer B. D. Composition operators on spaces of analytic functions, 1995, Boca Raton: CRC Press.

[3]

Smith W. Composition operators between Bergman and Hardy Spaces. Trans. Amer. Math. Soc., 1996, 348: 2331-2348.

[4]

Choa J. S., Kim H. O. Composition operators between Nevanlinna type spaces. J. Math. Anal. Appl., 2001, 257: 378-402.

[5]

Xiao J. Compact composition operators on the area-Nevanlinna class. Exposition. Math., 1999, 17: 255-264.

[6]

Hastings W. A. Carleson measure theorem for Bergman spaces. Proc. Amer. Math. Soc., 1975, 52: 237-241.

[7]

Zhu K. H. Operator theory in function spaces, 1990, New York: Marcel Dekker.

[8]

Luo L., Shi J. H. Composition operators between the weighted Bergman spaces on bounded symmetric domains of Cm. Chinese Ann. Math. Ser. A, 2000, 21A(1): 45-52.

AI Summary AI Mindmap
PDF (194KB)

588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/