Pure quantitative characterization of linear groups over the binary field

Wu-jie Shi , Lin-hong Wang , Shao-heng Wang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 272 -280.

PDF (183KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 272 -280. DOI: 10.1007/s11464-006-0007-9
Research Article

Pure quantitative characterization of linear groups over the binary field

Author information +
History +
PDF (183KB)

Abstract

The purpose of this paper is to discuss the pure scalar characterization of the automorphism group Aut (L5(2)) and the linear group L6(2). It is proved that Aut(L5(2)) and L6(2) can be characterized quantitatively by the set of element orders. The main results are obtained by using William’s work on prime graph components of finite groups and Brauer characters in trivializing the possible 2-subgroups.

Keywords

finite group / element order / linear group / characterization / 20D60 / 20D06

Cite this article

Download citation ▾
Wu-jie Shi, Lin-hong Wang, Shao-heng Wang. Pure quantitative characterization of linear groups over the binary field. Front. Math. China, 2006, 1(2): 272-280 DOI:10.1007/s11464-006-0007-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi W. J., Yang W. Z. A new characterization of A5 and the finite groups in which every non-identity element has a prime order. J. Southwest China Normal Univ., 1984, 9(1): 36-40.

[2]

Shi W. J. Finite groups whose elements have given orders. Chinese Sci. Bull., 1997, 42(16): 1761-1764.

[3]

Darafsheh M. R., Moghaddamfar A. R. A characterization of some finite groups by their element orders. Algebra Colloq., 2000, 7(4): 467-476.

[4]

Kondraté A. S., Mazurov V. D. Recognition of alternating groups of prime degree from their element orders. Siberian Math. J., 2000, 41(2): 360-371.

[5]

Darafsheh M. R., Moghaddamfar A. R. Characterization of the groups PSL5(2), PSL6(2) and PSL7(2). Comm. Algebra, 2001, 29(1): 465-475.

[6]

Shi W. J. and Lipschutz S., A new classification of finite simple groups, Proceedings of the MFI’ 99

[7]

Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. ATLAS of finite groups, 1985, Oxford: Clarendon Press.

[8]

Shi W. J. A characteristic property of PSL2(7). J. Austral. Math. Soc. Ser. A, 1984, 36: 354-356.

[9]

Shi W. J. A characteristic property of As. Acta Math. Sinica (N.S.), 1987, 3(1): 92-96.

[10]

Praeger C. E., Shi W. J. A characterization of some alternating and symmetric groups. Comm. Algebra, 1994, 22(5): 1507-1530.

[11]

Zsigmondy K. Z., theorie der potenzreste. Monatsh. Math. Phys., 1892, 3: 265-284.

[12]

Herzog M. On finite simple groups of orders divisible by three primes only. J. Algebra, 1968, 10: 383-388.

[13]

Shi W. J. On simple K4-groups. Chinese Sci. Bull., 1991, 36(7): 1281-1283.

[14]

Bugeaud Y., Cao Z., Mignotte M. On simple K4-groups. J. Algebra, 2001, 241: 658-668.

[15]

Williams J. S. Prime graph components of finite groups. J. Algebra, 1981, 69: 487-513.

[16]

Passman D. S. Permutation groups, 1968, New York: W.A. Benjamin.

[17]

Shi W. J. The characterization of the sporadic simple groups by their element orders. Algebra Colloq., 1994, 1(2): 159-166.

[18]

Jansen C., Lux K., Parker R., Wilson R. An atlas of Brauer characters, 1995, Oxford: Clarendon Press.

[19]

Darafsheh M. R. Computing the irreducible characters of the group GL6(2). Math. Comp., 1986, 46(173): 301-319.

[20]

Kurzweil H. Endliche Gruppen, 1977, Berlin/Heidelberg/New York: Springer-Verlag.

[21]

Darafsheh M. R., Moghaddamfar A. R. Corrigendum to “Characterization of the groups PSL(5, 2), PSL(6, 2) and PSL(7, 2)”. Comm. Algebra, 2003, 31(9): 4651-4653.

[22]

Brandl R., Shi W. J. The characterization of PSL(2,q) by its element orders. J. Algebra, 1994, 163(1): 109-114.

AI Summary AI Mindmap
PDF (183KB)

682

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/