Index iteration theory for symplectic paths and multiple periodic solution orbits

Yi-ming Long

Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 178 -200.

PDF (663KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 178 -200. DOI: 10.1007/s11464-006-0003-0
Survey Article

Index iteration theory for symplectic paths and multiple periodic solution orbits

Author information +
History +
PDF (663KB)

Abstract

In this paper, a survey on the index iteration theory for symplectic paths is given. Three applications of this theory are presented including closed characteristics on convex hypersurfaces and brake orbits on bounded domains.

Keywords

symplectic paths / index function theory / iteration theory / closed characteristics / brake orbits / 58E05 / 37J45 / 37J25 / 70H12

Cite this article

Download citation ▾
Yi-ming Long. Index iteration theory for symplectic paths and multiple periodic solution orbits. Front. Math. China, 2006, 1(2): 178-200 DOI:10.1007/s11464-006-0003-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosetti A., Benci V., Long Y. A note on the existence of multiple brake orbits. Nonlinear Anal. TMA., 1993, 21: 643-649.

[2]

Ambrosetti A., Mancini G. Solutions of minimal period for a class of convex Hamiltonian systems. Math. Ann., 1981, 255: 405-421.

[3]

Arnold V. I. On a characteristic class entering into the quantization condition. Funkt. Anal. Prilozh., 1967, 1: 1-14. Funct. Anal. Appl., 1967, 1:1–13. (English transl.)

[4]

Bartsch T. A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium. Ann. I.H.P. Anal. non linéaire., 1997, 14: 691-718.

[5]

Benci V. Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems. Ann. I.H.P. Anal. non lináire, 1984, 1: 401-412.

[6]

Benci V. A new approach to the Morse-Conley theory and some applications. Ann. di Mat. Pura Appl., 1991, 158(4): 231-305.

[7]

Benci V. and Giannoni F., A new proof of the existence of a brake orbit, In “Advanced Topics in the Theory of Dynamical Systems”, Notes Rep. Math. Sci. Eng., 1989, 6: 37–49

[8]

Berestycki H., Lasry J. M., Ruf B., Mancini G. Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces. Comm. Pure Appl. Math., 1985, 38: 252-290.

[9]

Bolotin S. Libration motions of natural dynamical systems. Vestnik Moskov Univ. Ser. I. Mat. Mekh., 1978, 6: 72-77.

[10]

Bolotin s., Kozlov V. V. Librations with many degreees of freedom. J. Appl. Math. Mech., 1978, 42: 245-250.

[11]

Bott R. On the iteration of closed geodesics and the Sturm intersection theory. Comm. Pure Appl. Math., 1956, 9: 171-206.

[12]

Brousseau V. L’index d’un systéme hamiltonien linéaire. C. R. Acad. Sc. Paris, t.303. Série, 1986, 1: 351-354.

[13]

Cappell S. E., Lee R., Miller E. Y. On the Maslov index. Comm. Pure Appl. Math., 1994, 47: 121-186.

[14]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser. Boston. 1993

[15]

Conley C., Zehnder E. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 1984, 37: 207-253.

[16]

De Gosson M., Maslov Classes, Metaplectic Representation and Lagrangian Quatization, Akademie Verlag. Berlin. 1997

[17]

Dell’Antonio G., D’Onofrio B., Ekeland I. Les systém hamiltoniens convexes et pairs ne sont pas ergodiques en general. C. R. Acad. Sci. Paris. Series I., 1992, 315: 1413-1415.

[18]

Dong D., Long Y. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans. Amer. Math. Soc., 1997, 349: 2619-2661.

[19]

Dong Y., Long L. Closed characteristics on asymmetric convex hypersurfaces in R 2n and corresponding pinching conditions. Acta Math. Sinica., 2004, 20: 223-232.

[20]

Dong Y., Long L. Closed characteristics on partially symmetric convex hypersurfaces in R 2n. J. Diff. Equa., 2004, 196: 226-248.

[21]

Dong Y., Long Y. Stable closed characteristics on partially symmetric convex hypersurfaces in R 2n. J. Diff. Equa., 2004, 206: 265-279.

[22]

Ekeland I. Une théorie de Morse pour les systémes hamiltoniens convexes. Ann. IHP. Anal. non Linéaire, 1984, 1: 19-78.

[23]

Ekeland I. Convexity Methods in Hamiltonian Mechanics, 1990, Berlin: Springer.

[24]

Ekeland I., Hofer H. Convex Hamiltonian energy surfaces and their closed trajectories. Comm. Math. Phys., 1987, 113: 419-467.

[25]

Ekeland I., Lasry J. M. On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. of Math., 1980, 112: 283-319.

[26]

Ekeland I., Lassoued L. Multiplicité des trajectoires fermées d’un systéme hamiltonien sur une hypersurface d’energie convexe. Ann. IHP. Anal. non Linéaire., 1987, 4: 1-29.

[27]

Fadell E., Rabinowitz P. Generalized cohomological theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 1978, 45: 139-174.

[28]

Franks J. Geodesics on S2 and periodic points of annulus diffeomorphisms. Invent. Math., 1992, 108: 403-418.

[29]

Franks J. Area preserving homeomorphisms of open surfaces of genus zero. New York J. Math., 1996, 2: 1-19.

[30]

Gelfand I. M., Lidskii V. B. On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Usp. Mat. Nauk., 1995, 10: 3-40 Transl. Amer. Math. Soc., 1958, 8(2): 143–181

[31]

Gluck H. and Ziller W., Existence of periodic solutions of conservtive systems, Seminar on Minimal Submanifolds, Princeton University Press (1983): 65–98

[32]

Grjuntal A. I. The existence of convex spherical metrics, all closed non-selfintersecting geodesics of which are hyperbolic. Math. USSR Izvestija, 1980, 14(1): 1-16.

[33]

Van Groesen E. W. C. Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy. J. Math. Anal. Appl., 1988, 132: 1-12.

[34]

Han J., Long Y. Normal forms of symplectic matrices (II). Acta Sci. Nat. Univ. Nankai., 1999, 32: 30-41.

[35]

Hayashi K. Periodic solution of classical Hamiltonian systems. Tokyo J. Math., 1983, 6: 473-486.

[36]

Hofer H. A new proof for a result of Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface. Boll. U. M. I., 1982, 16: 931-942.

[37]

Hofer H., Wysocki K., Zehnder E. The dynamics on three-dimensional strictly convex energy surfaces. Ann. of Math., 1998, 148: 197-289.

[38]

Hofer H., Wysocki K., Zehnder E. Finite energy foliations of tight three spheres and Hamiltonian dynamics. Ann. of Math., 2003, 157(2): 125-255.

[39]

Hu X., Long Y. Multiplicity of closed characteristics on non-degenerate star-shaped hypersurfaces in R 2n. Sciences in China., 2002, 45: 1038-1052.

[40]

Leray J. Lagrangian Analysis and Quantum Mechanics, A Mathematical structure related to asymptotic expansions and the Maslov index, 1981, Cambridge, Mass.: MIT Press.

[41]

Liapunov A. Probléme général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse, 1907, 9: 203-474.

[42]

Liu C., Long Y. An optimal increasing estimate for iterated Maslov-type indices. Chinese Sci. Bull., 1997, 42: 2275-2277.

[43]

Liu C., Long Y. Iteration inequalities of the Maslov-type index theory with applications. J. Diff. Equa., 2000, 165: 355-376.

[44]

Liu C., Long Y., Zhu C. Multiplicity of closed characteristics on symmetric convex hypersurfaces in R 2n. Math. Ann., 2002, 323: 201-215.

[45]

Long Y. Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Science in China (Scientia Sinica), Series A, 1990, 33: 1409-1419.

[46]

Long Y. The structure of the singular symplectic matrix set. Science in China. Series A, 1991, 34: 897-907.

[47]

Long Y. The minimal period problem for classical Hamiltonian systems with even potentials. Ann. Inst. H. Poincare. Anal. non linéaire, 1993, 10: 605-626.

[48]

Long Y. The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems. J. Diff. Equa., 1994, 111: 147-174.

[49]

Long Y. On the minimal period for periodic solutions of nonlinear Hamiltonian systems. Chinese Ann. of Math., 1997, 18B: 481-484.

[50]

Long Y. A Maslov-type index theory for symplectic paths. Top. Meth. Nonl. Anal., 1997, 10: 47-78.

[51]

Long Y. Hyperbolic closed characteristics on compact convex smooth hypersurfaces. J. Diff. Equa., 1998, 150: 227-249.

[52]

Long Y. Bott formula of the Maslov-type index theory. Pacific J. Math., 1999, 187: 113-149.

[53]

Long Y. Multiple periodic points of the Poincaré map of Lagrangian systems on tori. Math. Z., 2000, 233: 443-470.

[54]

Long Y. Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics. Advances in Math., 2000, 154: 76-131.

[55]

Long Y., Index Theory for Symplectic Paths with Applications, Progress in Math. 207, Birkhäuser. Basel., 2002

[56]

Long Y., Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Euro. Math. Soc., to appear

[57]

Long Y., An T. Indexing the domains of instability for Hamiltonian systems. NoDEA., 1998, 5: 461-478.

[58]

Long Y., Dong D. Normal forms of symplectic matrices. Acta Math.Sinica., 2000, 16: 237-260.

[59]

Long Y. and Zehnder E., Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, In Stoc. Proc. Phys. and Geom. S. Albeverio et al. ed. World Sci. (1990) 528–563

[60]

Long Y., Zhang D. and Zhu C., Multiple brake orbits on bounded convex symmetric domains, Advances in Math. (2006) in press

[61]

Long Y., Zhu C. Closed characteristics on compact convex hypersurfaces in R 2n. Annals of Math., 2002, 155: 317-368.

[62]

Maslov V. P., Fedoryuk M. V. The Quasiclassical Approximation for Equations of Quantum Mechanics, 1976, Moscow: Nauka English transl. Reidel Publ. Comp. Dordrecht (1981)

[63]

Morse M. Calculus of Variations in the Large. Amer. Math. Soc. Colloq. Publ., 1934, Providence, R. I.: Amer. Math. Soc..

[64]

Moser J. K. New aspects in the theory of stability of Hamiltonian systems. Comm. Pure Appl. Math., 1958, 11: 81-114.

[65]

Moser J. K. Periodic orbits near an equilibrium and a theorem of A. Weinstein, Comm. Pure Appl. Math., 1976, 29: 727-747.

[66]

Rabinowitz P. H. Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math., 1978, 31: 157-184.

[67]

Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. no. 65. Amer. Math. Soc., 1986

[68]

Rabinowitz P. H. On the existence of periodic solutions for a class of symmetric Hamiltonian systems. Nonlinear Anal. TMA., 1987, 11: 599-611.

[69]

Robbin J., Salamon D. The Maslov index for paths, Topology., 1993, 32: 827-844.

[70]

Salamon D., Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure and Appl. Math., 1992, 45: 1303-1360.

[71]

Seifert H. Periodischer Bewegungen mechanischen systeme. Math. Z., 1948, 51: 197-216.

[72]

Szulkin A. Morse theory and existence of periodic solutions of convex Hamiltonian systems. Bull. Soc. Math. France., 1988, 116: 171-197.

[73]

Szulkin A. An index theory and existence of multiple brake orbits for starshaped Hamiltonian systems. Math. Ann., 1989, 283: 241-255.

[74]

Viterbo C. Equivariant Morse theory for starshaped Hamiltonian systems. Trans Amer Math Soc., 1989, 311: 621-658.

[75]

Viterbo C. A new obstruction to embedding Lagrangian tori. Invent. Math., 1990, 100: 301-320.

[76]

Weinstein A. Periodic orbits for convex Hamiltonian systems. Ann. of Math., 1978, 108: 507-518.

AI Summary AI Mindmap
PDF (663KB)

833

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/