PDF
(377KB)
Abstract
This is a survey on the recent progresses in the study of branching processes with immigration, generalized Ornstein-Uhlenbeck processes, and affine Markov processes. We mainly focus on the applications of skew convolution semigroups and the connections in those processes.
Keywords
branching process
/
immigration
/
measure-valued process
/
affine process
/
Ornstein-Uhlenbeck process
/
skew convolution semigroup
/
stochastic equation
/
fluctuation limit
/
60J80
/
60F05
/
60H20
/
60K37
Cite this article
Download citation ▾
Zeng-hu Li.
Branching Processes with Immigration and Related Topics.
Front. Math. China, 2006, 1(1): 73-97 DOI:10.1007/s11464-005-0027-x
| [1] |
Athreya K. B., Ney P. E. Branching Processes, 1972, Berlin Heidelberg New York: Springer.
|
| [2] |
Barros-Neto J., An Introduction to the Theory of Distributions, New York: Marcel Dekker, 1973 (Chinese translation, 1981)
|
| [3] |
Bertoin J. Lévy Processes, 1996, Cambridge: Cambridge University Press.
|
| [4] |
Bogachev V. I., Röckner M., Schmuland B. Generalized Mehler semigroups and applications. Probab. Theory Relat. Fields, 1996, 105: 193-225.
|
| [5] |
Bojdecki T., Gorostiza L. G. Langevin equation for L′-valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory Relat. Fields, 1986, 73: 227-244.
|
| [6] |
Chen M.-F. Ergodic convergence rates of Markov processes—eigenvalues, inequalities and ergodic theory. Proceedings of ICM 2002, Vol. III, 2002, Beijing: Higher Education Press, 25-40.
|
| [7] |
Chen M.-F. From Markov Chains to Non-Equilibrium Particle Systems, 2004 2 Singapore: World Scientific.
|
| [8] |
Chen M.-F. Eigenvalues, Inequalities and Ergodic Theory, 2004, London: Springer.
|
| [9] |
Dawson D. A. Hannequin P. L. Measure-valued Markov Processes. Lecture Notes in Math., Vol. 1541, 1993, Berlin Heidelberg New York: Springer, 1-260.
|
| [10] |
Dawson D. A., Fleischmann K. Critical branching in a highly fluctuating random medium. Probab. Theory Relat. Fields, 1991, 90: 241-274.
|
| [11] |
Dawson D. A., Fleischmann K. A continuous super-Brownian motion in a super-Brownian medium. J. Theor. Probab., 1997, 10: 213-276.
|
| [12] |
Dawson D. A., Fleischmann K., Gorostiza L. G. Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium. Ann. Probab., 1989, 17(3): 1083-1117.
|
| [13] |
Dawson D. A., Li Z. H. Construction of immigration superprocesses with dependent spatial motion from one-dimensional excursions. Probab. Theory Relat. Fields, 2003, 127: 37-61.
|
| [14] |
Dawson D. A., Li Z. H. Non-differentiable skew convolution semigroups and related Ornstein-Uhlenbeck processes. Potential Anal., 2004, 20: 285-302.
|
| [15] |
Dawson D. A. and Li Z. H., Skew convolution semigroups and affine Markov processes, Ann. Probab., 2006 (in press)
|
| [16] |
Dawson D. A., Li Z. H., Schmuland B., Sun W. Generalized Mehler semigroups and catalytic branching processes with immigration. Potential Anal., 2004, 21: 75-97.
|
| [17] |
Dawson D. A., Li Z. H., Wang H. Superprocesses with dependent spatial motion and general branching densities. Electron. J. Probab., 2001, 6(25): 1-33.
|
| [18] |
Dellacherie C., Meyer P. A. Probabilities and Potential, Chap. V–VIII, 1982, Amsterdam: North-Holland.
|
| [19] |
Duffie D., Filipović D., Schachermayer W. Affine processes and applications in finance. Ann. Appl. Probab., 2003, 13: 984-1053.
|
| [20] |
Dynkin E. B. Diffusions, Superdiffusions and Partial Differential Equations, 2002, Providence, RI: Amer. Math. Soc.
|
| [21] |
Etheridge A. M. An Introduction to Superprocesses, 2000, Providence, RI: Amer. Math. Soc.
|
| [22] |
Fitzsimmons P. J. Construction and regularity of measure-valued Markov branching processes. Isr. J. Math., 1988, 64: 337-361.
|
| [23] |
Fitzsimmons P. J. On the martingale problem for measure-valued Markov branching processes. Seminar on Stochastic Processes, Vol. 1991, 1992, Boston, MA: Birkhäuser Boston, 39-51.
|
| [24] |
Fu Z. F., Li Z. H. Measure-valued diffusions and stochastic equations with Poisson process. Osaka J. Math., 2004, 41: 727-744.
|
| [25] |
Fuhrman M., Röckner M. Generalized Mehler semigroups: the non-Gaussian case. Potential Anal., 2000, 12: 1-47.
|
| [26] |
Gorostiza L. G. and Li Z. H., Fluctuation limits of measure-valued immigration processes with small branching. In: Gonzalez-Burrios J. M. and Gorostiza L. G. (eds.), Aportaciones Matemáticas: Investigación, Vol. 14, Mexico: Sociedad Matemática Mexicana, 261–268
|
| [27] |
Gorostiza L. G., Li Z. H. High density fluctuations of immigration branching particle systems. CMS Conference Proceedings, Ser. 26, 2000, Providence, RI: Amer. Math. Soc, 159-171.
|
| [28] |
Grey D. R. Asymptotic behavior of continuous time, continuous state-space branching processes. J. Appl. Probab., 1974, 11: 669-677.
|
| [29] |
Harris T. E. The Theory of Branching Processes, 1963, Berlin Heidelberg New York: Springer.
|
| [30] |
Hong W. M. Long time behavior for the occupation time processes of a super-Brownian motion with random immigration. Stoch. Process. Appl., 2002, 102: 43-62.
|
| [31] |
Hong W. M. Moderate deviation for the super-Brownian motion with super-Brownian immigration. J. Appl. Probab., 2002, 39: 829-838.
|
| [32] |
Hong W. M. Large deviations for the super-Brownian motion with super-Brownian immigration. J. Theor. Probab., 2003, 16: 899-922.
|
| [33] |
Hong W. M. Quenched mean limit theorems for the super-Brownian motion with super-Brownian immigration. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2005, 8: 383-396.
|
| [34] |
Hong W. M., Li Z. H. A central limit theorem for super Brownian motion with super Brownian immigration. J. Appl. Probab., 1999, 36: 1218-1224.
|
| [35] |
Hong W. M. and Li Z. H., Large and moderate deviations for occupation times of immigration superprocesses, 2005, 8: 593–603
|
| [36] |
Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1989, Amsterdam: North-Holland.
|
| [37] |
Jiřina M. Stochastic branching processes with continuous state space. Czechoslov. Math. J., 1958, 8: 292-313.
|
| [38] |
Jiřina M., Branching processes with measure-valued states. In: Trans. Third Prague Conf. Information Theory, Statist. Decision Func., Random Process., Prague: Publ. House Czech. Acad. Sci., 1964, 333–357
|
| [39] |
Kawazu K, Watanabe S Branching processes with immigration and related limit theorems. Theory Probab. Appl., 1971, 16: 36-54.
|
| [40] |
Le Gall J-F Spatial Branching Processes, Random Snakes and Partial Differential Equations, 1999, Basel: Birkhäuser (Lectures in Mathematics ETH Zürich)
|
| [41] |
Le Gall J.-F., Le Jan Y. Branching processes in Lévy processes: the exploration process. Ann. Probab., 1998, 26: 213-252.
|
| [42] |
Li Z. H., Integral representations of continuous functions, Chinese Sci. Bull. (Chinese ed.), 1991, 36: 81–84, math.bnu.edu.cn/~lizh (English edn.: 1991, 36: 979–983)
|
| [43] |
Li Z. H. Measure-valued branching processes with immigration. Stoch. Process. Appl., 1992, 43: 249-264.
|
| [44] |
Li Z. H., Convolution semigroups associated with measure-valued branching processes, Chin. Sci. Bull. (Chinese edn.), 1995, 40: 2018–2021, math.bnu.edu.cn/~lizh (English edn.: 1996, 41: 276–280)
|
| [45] |
Li Z. H. Immigration structures associated with Dawson-Watanabe superprocesses. Stoch. Process. Appl., 1996, 62: 73-86.
|
| [46] |
Li Z. H. Immigration processes associated with branching particle systems. Adv. Appl. Probab., 1998, 30: 657-675.
|
| [47] |
Li Z. H. Measure-valued immigration diffusions and generalized Ornstein-Uhlenbeck diffusions. Acta Math. Appl. Sin., 1999, 15: 310-320.
|
| [48] |
Li Z. H. Asymptotic behavior of continuos time and state branching processes. J. Aust. Math. Soc., Ser. A, 2000, 68: 68-84.
|
| [49] |
Li Z. H. Ornstein-Uhlenbeck type processes and branching processes with immigration. J. Appl. Probab., 2000, 37: 627-634.
|
| [50] |
Li Z. H. Skew convolution semigroups and related immigration processes. Theory Probab. Appl., 2002, 46: 274-296.
|
| [51] |
Li Z. H., A limit theorem of discrete Galton-Watson branching processes with immigration, J. Appl. Probab., 2006 (in press)
|
| [52] |
Li Z. H., Shiga T. Measure-valued branching diffusions: immigrations, excursions and limit theorems. J. Math. Kyoto Univ., 1995, 35: 233-274.
|
| [53] |
Li Z. H., Wang Z. K. Measure-valued branching process and immigration processes. Adv. Math. (China), 1999, 28: 105-134.
|
| [54] |
Li Z. H. and Zhang M., Fluctuation limit theorems of immigration superprocesses with small branching, Stat. Probab. Lett., 2006 (in press)
|
| [55] |
Linde W. Probability in Banach Spaces—Stable and Infinitely Divisible Distributions, 1986, New York: Wiley.
|
| [56] |
van Neerven J. M. A. M. Continuity and representation of Gaussian Mehler semigroups. Potential Anal., 2000, 13: 199-211.
|
| [57] |
Pakes A. G. Some limit theorems for continuous-state branching processes. J. Aust. Math. Soc., Ser. A, 1988, 44: 71-87.
|
| [58] |
Pakes A. G. Revisiting conditional limit theorems for mortal simple branching processes. Bernoulli, 1999, 5: 969-998.
|
| [59] |
Pitman J., Yor M. A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheor. Verw. Geb., 1982, 59: 425-457.
|
| [60] |
Röckner M., Wang F. Y. Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal., 2003, 203: 237-261.
|
| [61] |
Sato K. Lévy Processes and Infinitely Divisible Distributions, 1999, Cambridge: Cambridge University Press.
|
| [62] |
Schmuland B., Sun W. On the equation μt + s = μs*Tsμt. Stat. Probab. Lett., 2001, 52: 183-188.
|
| [63] |
Schaefer H. H. Topological Vector Spaces, 1980, Berlin Heidelberg New York: Springer.
|
| [64] |
Sharpe M. J. General Theory of Markov Processes, 1988, New York: Academic Press.
|
| [65] |
Shiga T., Watanabe S. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheor. Verw. Geb., 1973, 27: 37-46.
|
| [66] |
Walsh J. B. An introduction to stochastic partial differential equations. Lecture Notes in Math., Vol. 1180, 1986, Berlin Heidelberg New York: Springer, 226-439.
|
| [67] |
Wang F. Y. Functional Inequalities, Markov Processes, and Spectral Theory, 2005, Beijing: Science Press.
|
| [68] |
Wang F. Y., The stochastic order and critical phenomena for surperprocesses, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2005 (in press)
|
| [69] |
Wang F. Y., Dimension-free Harnack inequalities and applications, Front. Math. China, 2006, 1
|
| [70] |
Wang H. State classification for a class of measure-valued branching diffusions in a Brownian medium. Probab. Theory Relat. Fields, 1997, 109: 39-55.
|
| [71] |
Watanabe S., A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 1968, 141–167
|
| [72] |
Zhang M. Large deviation for super-Brownian motion with immigration. J. Appl. Probab., 2004, 41: 187-201.
|
| [73] |
Zhang M. Moderate deviations for super-Brownian motion with immigration. Sci. China, Ser. A, 2004, 41: 440-452.
|
| [74] |
Zhang M. Moderate deviation principles for the occupation time process of a super-Brownian motion with immigration. Chin. J. Contemp. Math., 2005, 26: 61-70.
|
| [75] |
Zhang M., On the large deviation for Brownian branching particle system, J. Appl. Probab., 2005 (in press) (with the announcement to appear in Front. Math. China, 2006, 1)
|