Branching Processes with Immigration and Related Topics

Zeng-hu Li

Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 73 -97.

PDF (377KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 73 -97. DOI: 10.1007/s11464-005-0027-x
Survey Article

Branching Processes with Immigration and Related Topics

Author information +
History +
PDF (377KB)

Abstract

This is a survey on the recent progresses in the study of branching processes with immigration, generalized Ornstein-Uhlenbeck processes, and affine Markov processes. We mainly focus on the applications of skew convolution semigroups and the connections in those processes.

Keywords

branching process / immigration / measure-valued process / affine process / Ornstein-Uhlenbeck process / skew convolution semigroup / stochastic equation / fluctuation limit / 60J80 / 60F05 / 60H20 / 60K37

Cite this article

Download citation ▾
Zeng-hu Li. Branching Processes with Immigration and Related Topics. Front. Math. China, 2006, 1(1): 73-97 DOI:10.1007/s11464-005-0027-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Athreya K. B., Ney P. E. Branching Processes, 1972, Berlin Heidelberg New York: Springer.

[2]

Barros-Neto J., An Introduction to the Theory of Distributions, New York: Marcel Dekker, 1973 (Chinese translation, 1981)

[3]

Bertoin J. Lévy Processes, 1996, Cambridge: Cambridge University Press.

[4]

Bogachev V. I., Röckner M., Schmuland B. Generalized Mehler semigroups and applications. Probab. Theory Relat. Fields, 1996, 105: 193-225.

[5]

Bojdecki T., Gorostiza L. G. Langevin equation for L′-valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory Relat. Fields, 1986, 73: 227-244.

[6]

Chen M.-F. Ergodic convergence rates of Markov processes—eigenvalues, inequalities and ergodic theory. Proceedings of ICM 2002, Vol. III, 2002, Beijing: Higher Education Press, 25-40.

[7]

Chen M.-F. From Markov Chains to Non-Equilibrium Particle Systems, 2004 2 Singapore: World Scientific.

[8]

Chen M.-F. Eigenvalues, Inequalities and Ergodic Theory, 2004, London: Springer.

[9]

Dawson D. A. Hannequin P. L. Measure-valued Markov Processes. Lecture Notes in Math., Vol. 1541, 1993, Berlin Heidelberg New York: Springer, 1-260.

[10]

Dawson D. A., Fleischmann K. Critical branching in a highly fluctuating random medium. Probab. Theory Relat. Fields, 1991, 90: 241-274.

[11]

Dawson D. A., Fleischmann K. A continuous super-Brownian motion in a super-Brownian medium. J. Theor. Probab., 1997, 10: 213-276.

[12]

Dawson D. A., Fleischmann K., Gorostiza L. G. Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium. Ann. Probab., 1989, 17(3): 1083-1117.

[13]

Dawson D. A., Li Z. H. Construction of immigration superprocesses with dependent spatial motion from one-dimensional excursions. Probab. Theory Relat. Fields, 2003, 127: 37-61.

[14]

Dawson D. A., Li Z. H. Non-differentiable skew convolution semigroups and related Ornstein-Uhlenbeck processes. Potential Anal., 2004, 20: 285-302.

[15]

Dawson D. A. and Li Z. H., Skew convolution semigroups and affine Markov processes, Ann. Probab., 2006 (in press)

[16]

Dawson D. A., Li Z. H., Schmuland B., Sun W. Generalized Mehler semigroups and catalytic branching processes with immigration. Potential Anal., 2004, 21: 75-97.

[17]

Dawson D. A., Li Z. H., Wang H. Superprocesses with dependent spatial motion and general branching densities. Electron. J. Probab., 2001, 6(25): 1-33.

[18]

Dellacherie C., Meyer P. A. Probabilities and Potential, Chap. V–VIII, 1982, Amsterdam: North-Holland.

[19]

Duffie D., Filipović D., Schachermayer W. Affine processes and applications in finance. Ann. Appl. Probab., 2003, 13: 984-1053.

[20]

Dynkin E. B. Diffusions, Superdiffusions and Partial Differential Equations, 2002, Providence, RI: Amer. Math. Soc.

[21]

Etheridge A. M. An Introduction to Superprocesses, 2000, Providence, RI: Amer. Math. Soc.

[22]

Fitzsimmons P. J. Construction and regularity of measure-valued Markov branching processes. Isr. J. Math., 1988, 64: 337-361.

[23]

Fitzsimmons P. J. On the martingale problem for measure-valued Markov branching processes. Seminar on Stochastic Processes, Vol. 1991, 1992, Boston, MA: Birkhäuser Boston, 39-51.

[24]

Fu Z. F., Li Z. H. Measure-valued diffusions and stochastic equations with Poisson process. Osaka J. Math., 2004, 41: 727-744.

[25]

Fuhrman M., Röckner M. Generalized Mehler semigroups: the non-Gaussian case. Potential Anal., 2000, 12: 1-47.

[26]

Gorostiza L. G. and Li Z. H., Fluctuation limits of measure-valued immigration processes with small branching. In: Gonzalez-Burrios J. M. and Gorostiza L. G. (eds.), Aportaciones Matemáticas: Investigación, Vol. 14, Mexico: Sociedad Matemática Mexicana, 261–268

[27]

Gorostiza L. G., Li Z. H. High density fluctuations of immigration branching particle systems. CMS Conference Proceedings, Ser. 26, 2000, Providence, RI: Amer. Math. Soc, 159-171.

[28]

Grey D. R. Asymptotic behavior of continuous time, continuous state-space branching processes. J. Appl. Probab., 1974, 11: 669-677.

[29]

Harris T. E. The Theory of Branching Processes, 1963, Berlin Heidelberg New York: Springer.

[30]

Hong W. M. Long time behavior for the occupation time processes of a super-Brownian motion with random immigration. Stoch. Process. Appl., 2002, 102: 43-62.

[31]

Hong W. M. Moderate deviation for the super-Brownian motion with super-Brownian immigration. J. Appl. Probab., 2002, 39: 829-838.

[32]

Hong W. M. Large deviations for the super-Brownian motion with super-Brownian immigration. J. Theor. Probab., 2003, 16: 899-922.

[33]

Hong W. M. Quenched mean limit theorems for the super-Brownian motion with super-Brownian immigration. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2005, 8: 383-396.

[34]

Hong W. M., Li Z. H. A central limit theorem for super Brownian motion with super Brownian immigration. J. Appl. Probab., 1999, 36: 1218-1224.

[35]

Hong W. M. and Li Z. H., Large and moderate deviations for occupation times of immigration superprocesses, 2005, 8: 593–603

[36]

Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1989, Amsterdam: North-Holland.

[37]

Jiřina M. Stochastic branching processes with continuous state space. Czechoslov. Math. J., 1958, 8: 292-313.

[38]

Jiřina M., Branching processes with measure-valued states. In: Trans. Third Prague Conf. Information Theory, Statist. Decision Func., Random Process., Prague: Publ. House Czech. Acad. Sci., 1964, 333–357

[39]

Kawazu K, Watanabe S Branching processes with immigration and related limit theorems. Theory Probab. Appl., 1971, 16: 36-54.

[40]

Le Gall J-F Spatial Branching Processes, Random Snakes and Partial Differential Equations, 1999, Basel: Birkhäuser (Lectures in Mathematics ETH Zürich)

[41]

Le Gall J.-F., Le Jan Y. Branching processes in Lévy processes: the exploration process. Ann. Probab., 1998, 26: 213-252.

[42]

Li Z. H., Integral representations of continuous functions, Chinese Sci. Bull. (Chinese ed.), 1991, 36: 81–84, math.bnu.edu.cn/~lizh (English edn.: 1991, 36: 979–983)

[43]

Li Z. H. Measure-valued branching processes with immigration. Stoch. Process. Appl., 1992, 43: 249-264.

[44]

Li Z. H., Convolution semigroups associated with measure-valued branching processes, Chin. Sci. Bull. (Chinese edn.), 1995, 40: 2018–2021, math.bnu.edu.cn/~lizh (English edn.: 1996, 41: 276–280)

[45]

Li Z. H. Immigration structures associated with Dawson-Watanabe superprocesses. Stoch. Process. Appl., 1996, 62: 73-86.

[46]

Li Z. H. Immigration processes associated with branching particle systems. Adv. Appl. Probab., 1998, 30: 657-675.

[47]

Li Z. H. Measure-valued immigration diffusions and generalized Ornstein-Uhlenbeck diffusions. Acta Math. Appl. Sin., 1999, 15: 310-320.

[48]

Li Z. H. Asymptotic behavior of continuos time and state branching processes. J. Aust. Math. Soc., Ser. A, 2000, 68: 68-84.

[49]

Li Z. H. Ornstein-Uhlenbeck type processes and branching processes with immigration. J. Appl. Probab., 2000, 37: 627-634.

[50]

Li Z. H. Skew convolution semigroups and related immigration processes. Theory Probab. Appl., 2002, 46: 274-296.

[51]

Li Z. H., A limit theorem of discrete Galton-Watson branching processes with immigration, J. Appl. Probab., 2006 (in press)

[52]

Li Z. H., Shiga T. Measure-valued branching diffusions: immigrations, excursions and limit theorems. J. Math. Kyoto Univ., 1995, 35: 233-274.

[53]

Li Z. H., Wang Z. K. Measure-valued branching process and immigration processes. Adv. Math. (China), 1999, 28: 105-134.

[54]

Li Z. H. and Zhang M., Fluctuation limit theorems of immigration superprocesses with small branching, Stat. Probab. Lett., 2006 (in press)

[55]

Linde W. Probability in Banach Spaces—Stable and Infinitely Divisible Distributions, 1986, New York: Wiley.

[56]

van Neerven J. M. A. M. Continuity and representation of Gaussian Mehler semigroups. Potential Anal., 2000, 13: 199-211.

[57]

Pakes A. G. Some limit theorems for continuous-state branching processes. J. Aust. Math. Soc., Ser. A, 1988, 44: 71-87.

[58]

Pakes A. G. Revisiting conditional limit theorems for mortal simple branching processes. Bernoulli, 1999, 5: 969-998.

[59]

Pitman J., Yor M. A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheor. Verw. Geb., 1982, 59: 425-457.

[60]

Röckner M., Wang F. Y. Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal., 2003, 203: 237-261.

[61]

Sato K. Lévy Processes and Infinitely Divisible Distributions, 1999, Cambridge: Cambridge University Press.

[62]

Schmuland B., Sun W. On the equation μt + s = μs*Tsμt. Stat. Probab. Lett., 2001, 52: 183-188.

[63]

Schaefer H. H. Topological Vector Spaces, 1980, Berlin Heidelberg New York: Springer.

[64]

Sharpe M. J. General Theory of Markov Processes, 1988, New York: Academic Press.

[65]

Shiga T., Watanabe S. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheor. Verw. Geb., 1973, 27: 37-46.

[66]

Walsh J. B. An introduction to stochastic partial differential equations. Lecture Notes in Math., Vol. 1180, 1986, Berlin Heidelberg New York: Springer, 226-439.

[67]

Wang F. Y. Functional Inequalities, Markov Processes, and Spectral Theory, 2005, Beijing: Science Press.

[68]

Wang F. Y., The stochastic order and critical phenomena for surperprocesses, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2005 (in press)

[69]

Wang F. Y., Dimension-free Harnack inequalities and applications, Front. Math. China, 2006, 1

[70]

Wang H. State classification for a class of measure-valued branching diffusions in a Brownian medium. Probab. Theory Relat. Fields, 1997, 109: 39-55.

[71]

Watanabe S., A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 1968, 141–167

[72]

Zhang M. Large deviation for super-Brownian motion with immigration. J. Appl. Probab., 2004, 41: 187-201.

[73]

Zhang M. Moderate deviations for super-Brownian motion with immigration. Sci. China, Ser. A, 2004, 41: 440-452.

[74]

Zhang M. Moderate deviation principles for the occupation time process of a super-Brownian motion with immigration. Chin. J. Contemp. Math., 2005, 26: 61-70.

[75]

Zhang M., On the large deviation for Brownian branching particle system, J. Appl. Probab., 2005 (in press) (with the announcement to appear in Front. Math. China, 2006, 1)

AI Summary AI Mindmap
PDF (377KB)

773

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/