Some New Results on Strong Ergodicity

Yong-hua Mao

Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 105 -109.

PDF (167KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 105 -109. DOI: 10.1007/s11464-005-0022-2
Announcement

Some New Results on Strong Ergodicity

Author information +
History +
PDF (167KB)

Abstract

Coupling method is used to obtain the explicit upper and lower bounds for convergence rates in strong ergodicity for Markov processes. For one-dimensional diffusion processes and birth-death processes, these bounds are sharp in the sense that the upper one and the lower one are only different by a constant.

Keywords

Markov process / strong ergodicity / coupling / convergence rate / spectral gap

Cite this article

Download citation ▾
Yong-hua Mao. Some New Results on Strong Ergodicity. Front. Math. China, 2006, 1(1): 105-109 DOI:10.1007/s11464-005-0022-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldous D., Diaconis P. Strong uniform times and finite random walks. Adv. Appl. Math., 1987, 8: 69-97.

[2]

Anderson W. Continuous-Time Markov Chains, 1991, Berlin Heidelberg New York: Springer.

[3]

Chen A. Y. Ergodicity and stability of generalized Markov branching processes with resurrection. J. Appl. Probab., 2002, 39: 786-803.

[4]

Chen M.-F. From Markov Chains to Non-equilibrium Particle Systems, 1992, Singapore: World Scientific.

[5]

Chen M.-F., Li S.-F. Coupling methods for multidimensional diffusion processes. Ann. Probab., 1989, 17: 151-177.

[6]

Chen R.-R. An extended class of time-continuous branching processes. J. Appl. Probab., 1997, 34: 14-23.

[7]

Cranston M. Gradient estimates on manifolds using coupling. J. Funct. Anal., 1991, 99: 110-124.

[8]

Kendall W. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics, 1986, 19: 111-129.

[9]

Lindvall T. Lectures on the coupling method, 1992, New York: Wiley.

[10]

Mao Y.-H. Strong ergodicity for Markov processes by coupling methods. J. Appl. Probab., 2002, 39: 839-852.

[11]

Wang F.-Y. Estimates of the first Dirichlet eigenvalue by using diffusion processes. Probab. Theory Relat. Fields, 1995, 101: 363-369.

[12]

Wu L. M. Essential spectral radius for Markov semigroups, I. Discrete time case. Probab. Theory Relat. Fields, 2004, 128: 255-321.

[13]

Zhang Y.-H. Optimal couplings for a certain class of distances. Beijing Shifan Daxue Xuebao, 1996, 32: 463-467.

[14]

Zhang Y.-H. Strong ergodicity for single birth processes. J. Appl. Probab., 2001, 38: 270-277.

AI Summary AI Mindmap
PDF (167KB)

782

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/