Some New Results on Strong Ergodicity

Yong-hua Mao

Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 105-109.

PDF(167 KB)
PDF(167 KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 105-109. DOI: 10.1007/s11464-005-0022-2
Announcement

Some New Results on Strong Ergodicity

Author information +
History +

Abstract

Coupling method is used to obtain the explicit upper and lower bounds for convergence rates in strong ergodicity for Markov processes. For one-dimensional diffusion processes and birth-death processes, these bounds are sharp in the sense that the upper one and the lower one are only different by a constant.

Keywords

Markov process / strong ergodicity / coupling / convergence rate / spectral gap

Cite this article

Download citation ▾
Yong-hua Mao. Some New Results on Strong Ergodicity. Front. Math. China, 2006, 1(1): 105‒109 https://doi.org/10.1007/s11464-005-0022-2

References

[1.]
Aldous D., Diaconis P. Strong uniform times and finite random walks. Adv. Appl. Math., 1987, 8: 69-97.
CrossRef Google scholar
[2.]
Anderson W. Continuous-Time Markov Chains, 1991, Berlin Heidelberg New York: Springer.
[3.]
Chen A. Y. Ergodicity and stability of generalized Markov branching processes with resurrection. J. Appl. Probab., 2002, 39: 786-803.
[4.]
Chen M.-F. From Markov Chains to Non-equilibrium Particle Systems, 1992, Singapore: World Scientific.
[5.]
Chen M.-F., Li S.-F. Coupling methods for multidimensional diffusion processes. Ann. Probab., 1989, 17: 151-177.
[6.]
Chen R.-R. An extended class of time-continuous branching processes. J. Appl. Probab., 1997, 34: 14-23.
[7.]
Cranston M. Gradient estimates on manifolds using coupling. J. Funct. Anal., 1991, 99: 110-124.
CrossRef Google scholar
[8.]
Kendall W. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics, 1986, 19: 111-129.
[9.]
Lindvall T. Lectures on the coupling method, 1992, New York: Wiley.
[10.]
Mao Y.-H. Strong ergodicity for Markov processes by coupling methods. J. Appl. Probab., 2002, 39: 839-852.
[11.]
Wang F.-Y. Estimates of the first Dirichlet eigenvalue by using diffusion processes. Probab. Theory Relat. Fields, 1995, 101: 363-369.
CrossRef Google scholar
[12.]
Wu L. M. Essential spectral radius for Markov semigroups, I. Discrete time case. Probab. Theory Relat. Fields, 2004, 128: 255-321.
CrossRef Google scholar
[13.]
Zhang Y.-H. Optimal couplings for a certain class of distances. Beijing Shifan Daxue Xuebao, 1996, 32: 463-467.
[14.]
Zhang Y.-H. Strong ergodicity for single birth processes. J. Appl. Probab., 2001, 38: 270-277.
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/