On the Cauchy Problem of the Camassa-Holm Equation

Hui-hui Dai , Keng-Huat Kwek , Hong-jun Gao , Chao-chun Qu

Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 144 -159.

PDF (296KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 144 -159. DOI: 10.1007/s11464-005-0002-6
Research Article

On the Cauchy Problem of the Camassa-Holm Equation

Author information +
History +
PDF (296KB)

Abstract

The purpose of this paper is to investigate the Cauchy problem of the Camassa-Holm equation. By using the abstract method proposed and studied by T. Kato and priori estimates, the existence and uniqueness of the global solution to the Cauchy problem of the Camassa-Holm equation in Lp frame under certain conditions are obtained. In addition, the continuous dependence of the solution of this equation on the linear dispersive coefficient contained in the equation is obtained.

Keywords

local existence / global existence / Cauchy problem / Camassa-Holm equation / 35Q53 / 76B15

Cite this article

Download citation ▾
Hui-hui Dai, Keng-Huat Kwek, Hong-jun Gao, Chao-chun Qu. On the Cauchy Problem of the Camassa-Holm Equation. Front. Math. China, 2006, 1(1): 144-159 DOI:10.1007/s11464-005-0002-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Camassa R., Holm D. An integrable shallow water equation with peaked solutions. Phys. Rev. Lett., 1993, 71: 1661-1664.

[2]

Camassa R., Holm D., Hyman J. A new integrable shallow water equation. Adv. Appl. Mech., 1994, 31: 1-33.

[3]

Dai H. H. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech., 1998, 127: 193-207.

[4]

Fuchssteiner B. The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional Abelian symmetry group. Prog. Theor. Phys., 1981, 65: 861-876.

[5]

Fuchssteiner B. Some tricks for the symmetry—toolbox for nonlinear equations: generalizations of the Camassa-Holm equations. Physica D, 1996, 95: 229-243.

[6]

Schiff J. Zero curvature formulations of dual hierarchies. J. Math. Phys., 1996, 37: 1928-1938.

[7]

Schiff J. The Camassa-Holm equation: a loop group approach. Physica D, 1998, 121: 24-43.

[8]

Constantin A., Mckean H. P. A shallow water equation on the circles, Commun. Pure Appl. Math., 1999, 52: 949-982.

[9]

Alber M. S., Camassa R., Holm D., Marsden J. E. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs. Lett. Math. Phys., 1994, 32: 137-151.

[10]

Alber M. S., Camassa R., Fedorov Y. N., Holm D., Marsden J. E. On billiard solutions of nonlinear PDEs. Phys. Lett. A, 1999, 264: 171-178.

[11]

Cooper F., Shepard H. Solitons in the Camassa-Holm shallow water equations. Phys. Lett. A, 1994, 194: 246-250.

[12]

Alber M. S., Camassa R., Holm D., Marsden J. E. On the link between umbilic geodesics and soliton solutions of nonlinear PDEs. Proc. R. Soc. Lond. A, 1995, 450: 677-692.

[13]

Li Y. A., Olver P. J. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactons and peakon. Discrete Cont. Dyn. Syst., 1997, 3: 419-432.

[14]

Li Y. A., Olver P. J. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system II. Complex analytic behavior and convergence to non-analytic solution. Discrete Cont. Dyn. Syst., 1998, 4: 159-191.

[15]

Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation. J. Differ. Equ., 1997, 141: 218-223.

[16]

Constantin A., Escher J. Global weak solutions for a shallow water equation. Indiana Univ. Math. J., 1998, 47: 1527-1545.

[17]

Constantin A., Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 1998, 181: 229-243.

[18]

Constantin A., Escher J. Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1998, 26: 303-328.

[19]

Kwek K. H., Gao H. J., Zhang W. N., Qu C.-C. An initial boundary problem of Camassa-Holm equation. J. Math. Phys., 2000, 41: 8279-8285.

[20]

Zhang P., Zheng Y.X. On oscillations of an asymptotic equation of a nonlinear variational wave equation. Asymptot. Anal., 1998, 18: 307-327.

[21]

Zhang P., Zheng Y. X. On the existence and uniqueness of solutions to an asymptotic equation of a variational wave equation. Acta Math. Sin., Engl. Ser., 1999, 15: 115-130.

[22]

Zhang P., Zheng Y. X. Existence and uniqueness of solutions of an asymptotic equation arising from a variational wave equation with general data. Arch. Ration. Mech. Anal., 2000, 155: 49-83.

[23]

Xin Z. P., Zhang P. On the weak solutions to a shallow water equation. Commun. Pure Appl. Math., 2000, 53: 1411-1433.

[24]

Zhang P., Zheng Y. X. Singular and rarefactive solutions to a nonlinear variational wave equation. Chin. Ann. Math., Ser. B., 2001, 22: 159-170.

[25]

Hunter J. H., Zheng Y. X. On a completely integrable nonlinear hyperbolic variational equation. Physica D, 1994, 79: 361-386.

[26]

Hunter J. H., Zheng Y. X. On a nonlinear hyperbolic variational equation, I. Global existence of weak solutions. Arch. Ration. Mech. Anal., 1995, 129: 305-335.

[27]

Himonas A. A., Misidek G. Well-posedness of the Cauchy problem for a shallow water equation on the circle. J. Differ. Equ., 2000, 161: 479-495.

[28]

Li Y.A., Olver P.J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ., 2000, 162: 27-63.

[29]

Camassa R. Characteristic variables for a completely integrable shallow water equation. Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEdS’79 (Gallipoli, 1999), 2000, River Edge, NJ: World Science Publishing, 65-74.

[30]

Kato T. Quasi-linear equations of evolution with applications to partial differential equations, spectral theory and differential equations. Lect. Notes Math., 1975, 448: 25-70 (Berlin Heidelberg New York: Springer)

[31]

Yosida K. Functional Analysis, 1966, Berlin Heidelberg New York: Springer-Verlag.

AI Summary AI Mindmap
PDF (296KB)

779

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/