By using computational fluid dynamics (CFD) modeling and simulation, a predictive method was proposed to explore the erosion failure of reactor effluent air cooler (REAC) pipes with liner under multiphase flow. A theoretical model based on the erosion-corrosion effects of REAC on mixture turbulent flow was proposed for multiphase flow. Effects of various working conditions, liner shapes, and structures, as well as flow parameters on numerical simulations were investigated. Besides, the pipe’s erosion-corrosion rules under multiphase flow and the relationship between multiphase flow and erosion-corrosion under dangerous working conditions were studied. By CFD numerical simulations, the exact position where some typical pipes thinned and failed rapidly by erosion was found and the main factors causing erosion-corrosion failure were discussed. Finally, numerical results obtained by using the proposed method were compared with experimental results.
Ping TANG, Jian YANG, Jinyang ZHENG, Shizheng HE, Jianjun YE, Guofu OU, Ieong WONG, Yanbao MA,
. Erosion-corrosion failure of REAC pipes under
multiphase flow[J]. Frontiers in Energy, 2009
, 3(4)
: 389
-395
.
DOI: 10.1007/s11708-009-0045-6