REVIEW ARTICLE

Human power-based energy harvesting strategies for mobile electronic devices

  • Dewei JIA 1 ,
  • Jing LIU , 2,3
Expand
  • 1. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
  • 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
  • 3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 03 May 2008

Accepted date: 05 Jul 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Energy problems arise with the proliferation of mobile electronic devices, which range from entertainment tools to life saving medical instruments. The large amount of energy consumption and increasing mobility of electronic devices make it urgent that new power sources should be developed. It has been gradually recognized that the human body is highly flexible in generating applicable power from sources of heat dissipation, joint rotation, enforcement of body weight, vertical displacement of mass centers, and even elastic deformation of tissues and other attachments. These basic combinations of daily activities or metabolic phenomena open up possibilities for harvesting energy which is strong enough to power mobile or even implantable medical devices which could be used for a long time or be recharged permanently. A comprehensive review is presented in this paper on the latest developed or incubating electricity generation methods based on human power which would serve as promising candidates for future mobile power. Thermal and mechanical energy, investigated more thoroughly so far, will particularly be emphasized. Thermal energy relies on body heat and employs the property of thermoelectric materials, while mechanical energy is generally extracted in the form of enforcement or displacement excitation. For illustration purposes, the piezoelectric effect, dielectric elastomer and the electromagnetic induction couple, which can convert force directly into electricity, were also evaluated. Meanwhile, examples are given to explain how to adopt inertia generators for converting displacement energy via piezoelectric, electrostatic, electromagnetic or magnetostrictive vibrators. Finally, future prospects in harvesting energy from human power are made in conclusion.

Cite this article

Dewei JIA , Jing LIU . Human power-based energy harvesting strategies for mobile electronic devices[J]. Frontiers in Energy, 0 , 3(1) : 27 -46 . DOI: 10.1007/s11708-009-0002-4

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 50776097).
1
Ezzati M, Lopez A D, Rodgers A. Comparative quantification of health risks: Global and regional burden of disease due to selected major risk factors. Lancet, 2002, 360(9343): 1347-1360

DOI

2
Jones C E, Sivalingam K M, Agrawal P, . A survey of energy efficient network protocols for wireless networks. Wireless Networks, 2001, 7(4): 343-358

DOI

3
Lin C-H, Liu J-C, Liao C-W. Energy consumption analysis of audio applications on mobile handheld devices. In: 2007 IEEE Region 10 Conference, Taipei: IEEE. 2007, 1-4

4
Gerosa A, Maniero A, Neviani A. A fully integrated two-channel a/d interface for the acquisition of cardiac signals in implantable pacemakers. IEEE Journal of Solid-State Circuits, 2004, 39(7): 1083-1093

DOI

5
Kelly S K,Wyatt J L. Low power neural stimulator for a retinal prosthesis. ARVO, 2004, 45(5): 4174-4174

6
Groning R, Remmerbach S, Jansen A C. Telemedicine: insulin pump controlled via the global system for mobile communications (GSM). International Journal of Pharmaceutics, 2007, 339(1-2): 61-65

DOI

7
Rabaey K, Lissens G, Siciliano S D, . A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 2003, 25(18): 1531-1535

DOI

8
Justin G A, Zhang Y, Sun M, . Biofuel cells: A possible power source for implantable electronic devices. 2004 Conference Proceedings 26th Annual International Conference of the Engineering in Medicine and Biology Society, 2004, 6(2): 4096-4099

9
Maisel W H, Sweeney M O, Stevenson W G, . Recalls and safety alerts involving pacemakers and implantable cardioverter-defibrillator generators. Am Med Assoc, 2001, 286(7): 793-799

DOI

10
Lal A D, Li R H. Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing, 2005, 4(1): 53-61

DOI

11
Epstein A H. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 205-206

DOI

12
Tanaka S, Chang KS, Min KB, . Mems-based components of a miniature fuel cell/fuel reformer system. Chemical Engineering Journal, 2004, 101(1-3): 143-149

DOI

13
Li D, Chou P H. Maximizing efficiency of solar-powered systems by load matching. In: 2004 Proceedings of the International Symposium on Low Power Electronics and Design. Piscataway: IEEE, 2004, 162-167

14
Lee J B, Chen Z, Allen M G, . A high voltage solar cell array as an electrostatic MEMS power supply. 1994 IEEE Workshop on Micro Electro Mechanical Systems, 1994, 331-336

15
Goto K, Nakagawa T, Nakamura O, . An implantable power supply with an optically rechargeable lithium battery. IEEE Transactions on Biomedical Engineering, 2001, 48(7): 830-833

DOI

16
Pagidimarry N K, Konijeti V C. A high efficiency optical power transmitting system to a rechargeable lithium battery for all implantable biomedical devices. In: IFMBE Proceedings 15th, Berlin: Springer. 2007, 533-537

17
Sliski A P. Low power x-ray source with implantable probe for treatment of brain tumors. US Patent, <patent>5369679</patent>, 11/29/1994

18
Wang G, Liu W, Bashirullah R, . A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In: IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2004, 17-20

19
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 2005, 4(1): 18-27

DOI

20
Stevels A L N, Jansen A J. Renewable energy in portable radios, an environmental benchmarking study. Journal for Sustainable Product Design, 1998, 25(4): 577-582

21
Leonov V, Fiorini P. Thermal matching of a thermoelectric energy scavenger with the ambient. In: Proc 5th European Conf on Thermoelectrics (ECT). Ukraine: Odessa, 2007, 10-12

22
Stordeur M, Stark I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In: IEEE 16th Conference on Thermoelectrics. Dresden: IEEE, 1997, 575-577

23
Qu W, Plotner M, Fischer W J. Micro fabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems. J Micromech Microeng, 2001, 11(2): 146-152

DOI

24
Venkatasubramanian R, Siivola E, Colpitts T B, . Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602

DOI

25
Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In: 2005 International Conference on Thermoelectrics, Piscataway: IEEE, 2005, 265-267

26
Boettner H, Schubert A, Schlereth K H, . New thermoelectric components using micro-system-technologies. Micro electro-mechanical Systems, 2004, 13(3): 414-420

27
Acklin B, Schlereth K, Boettner H, . Process for producing a thermoelectric converter. <patent>US Patent 6818470</patent>. 11/16/2004

28
Strasser M, Aigner R, Lauterbach C, . Micromachined cmos thermoelectric generators as on-chip power supply. Sensors and Actuators A: Physical, 2004, 114(2,3): 362-370

29
Dragoman M, Dragoman D, Plana R. Modeling of rf energy sensing and harvesting using the giant thermoelectric effect in carbon nanotubes. Applied Physics Letters, 2007, 91(17): 173117

DOI

30
Ghamaty S, Elsner N B. Quantum well thermoelectric devices. In: Nolas G S, Yang Jihui, Hogan T P, . Thermoelectric Materials 2003-Research and Applications (2003 MRS Fall Meeting). Boston, MA, 2003, 225-228

31
Ghamaty S, Bass J C, Elsner N B. Quantum well thermoelectric devices and applications. Twenty-Second International Conference on Thermoelectrics ICT, Piscataway: IEEE, 2003. 563-566

32
Jovanovic V, Ghamaty S. Design, fabrication and testing of energy-harvesting thermoelectric generator. In: Matsuzaki Y ed. Smart Structures and Materials 2006: Smart Structures and Integrated Systems, Nagoya Univ, Japan, 2006, 142-149

33
Weber J, Potje-Kamloth K, Haase F, . Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical, 2006, 132(1): 325-330

DOI

34
IEEE. Standard on piezoelectricity ANSI/ IEEE standard. 1987

35
Clark W, Ramsay M. Smart material transducers as power sources for mems devices. In: Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials. Bellingham: SPIE, 2001, 429-438

36
Gonzalez J L, Rubio A, Moll F. A prospect of the piezoelectric effect to supply power to wearable electronic devices. In: Proc 4th Int Conf on Materials Engineering for Resources. Piscataway: IEEE, 2001, 202-207

37
Williams R B, Park G, Inman D J, . An overview of composite actuators with piezoceramic fibers. In: Proc IMAC-XX Conf on Structural Dynamics. Bellingham: SPIE, 2002, 1618-1624

38
Swallow L M, Luo J K, Siores E, . A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Structure, 2008, 17(2): 025017

DOI

39
Pelrine R. Dielectric elastomers: Generator made fundamentals and applications. In: Proc ISSS. Bellingham: SPIE, 2001, 148-156

40
Prahlad H, Kornbluh R, Pelrine R, . Polymer power: Dielectric elastomers and their applications in distributed actuation and power generation. In: Proceedings of ISSS 2005, Bellingham: SPIE, 2005. 100-107

41
Kornbluh R D, Pelrine R, Pei Q, . Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Smart Structures and Materials 2002, Bellingham: SPIE, 2002, 254-270

42
Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 1998, 64(1): 77-85

DOI

43
Kymissis J, Kendall C, Paradiso J, . Parasitic power harvesting in shoes. In: Second IEEE Conf Wearable Computing, Washington DC: IEEE Computer Society, 1998, 132-139

44
Poulin G, Sarraute E, Costa F. Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sensors & Actuators: A Physical, 2004, 116(3): 461-471

DOI

45
Saha C R, O’Donnell T, Wang N, . Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators: A Physical, 2008, 137(1): 1-7

46
Rome L C, Flynn L, Goldman E M, . Generating electricity while walking with loads. Science, 2005, 309(9): 1725-1728

DOI

47
WilliamsC B, ShearwoodC, HarradineM A, . Development of an electromagnetic micro-generator. IEE Proc Circuits Devices Syst, 2001, 148 (6): 337-342

DOI

48
Stephen N G. On energy harvesting from ambient vibration. J Sound Vib, 2006, 293(1-2): 409-425

DOI

49
Bouten C V C, Koekkoek K T M, Verduin M, . A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans on Biomedical,1997, 44(3): 136-147

DOI

50
Cavallier B, Berthelot P, Ballandras S, . Energy harvesting using composite silicon/lithium niobate vibrating structures. In: 2007 IEEE Ultrasonics Symposium. New York: IEEE, 2007, 1602-1604

51
Roundy S. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Dissertation for PhD: University of California, Berkeley, 2003, 103

52
Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Journal of Strain, 2004, 40(2): 49-58

DOI

53
Eggborn T. Analytical models to predict power harvesting with piezoelectricmaterials. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University, 1999, 158-163

54
Ren K, Liu Y, Hofmann H, . An active energy harvesting scheme with an electroactive polymer. Applied Physics Letters, 2007, 91(13): 132910

DOI

55
Ottman G, Hofmann H, Lesieutre G. Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode. IEEE Trans on Power Electronics, 2003, 18(2): 696-703

DOI

56
Lefeuvre E, Badel A, Richard C, . Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J Intell Mater Syst Struct, 2005, 16(10): 865-876

DOI

57
Ottman G, Hofmann H, Bhatt A, . Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics, 2002, 17(5): 1-8

DOI

58
Sodano H A, Park G, Inman D J. Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures, 2005, 16(1): 67-75

DOI

59
Sodano H A, Park G, Inman D J. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 799-807

DOI

60
Sodano H A, Park G, Leo D J, . Model of piezoelectric power harvesting beam. In: ASME’s International Mechanical Engineering Congress and Expo. New Orleans: ASME, 2003, 15-21

61
Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 2004, 36(3): 197-205

DOI

62
Lesieutre G, Hofmann H, Ottman G. Electric power generation from piezoelectric materials. In: The 13th International Conference on Adaptive Structures and Technologies. New York: IEEE, 2002, 153-158

63
Santos J L, Antunes F, Chehab A, . A maximum power point tracker for pv systems using a high performance boost converter. Sol Energy, 2006, 80(7): 772-778

DOI

64
Renaud M, Fiorini P, Hoof C. Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Mater Structure, 2007, 16(4): 1125-1135

DOI

65
Mateu M L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: Proc of XVIII Design of Circuits and Integrated Systems Conference, Piscataway. IEEE, 2003, 677-682

66
Wischke M, Goldschmidtboeing F, Woias P. A low cost generator concept for energy harvesting applications. In:The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Piscataway. IEEE, 2007, 875-878

67
Meninger S, Mur-Miranda J, Amirtharajah R, . Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2001, 9(1): 64-76

68
Mitcheson P D, Green T C, Yeatman E M, . Architectures for vibration-driven micropower generators. J of Microelectromechanical Systems, 2004, 13(3): 429-440

DOI

69
Despesse G, Jager T, Chaillout J, . Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse, 2005, 386-390

70
Ma W, Wong M,Ruber L. Dynamic simulation of an implemented electrostatic power micro-generator. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse, 2005, 380-385

71
Meninger S, Mur-Miranda J, Lang J, . Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2001, 9(1): 64-76

72
Tashiro R, Kabei N, Katayama K, . Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs, 2002, 5(4): 0239-0245

73
Tashiro R, Kabai N, Katayama K, . Development of an electrostatic generator that harnesses the motion of a living body. Journal of Artificial Organs, 2000, 4(3): 916-922

74
Arakawa Y, Suzuki Y, Kasagi N. Micro seismic power generator using electret polymer film power. In: 2006 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul: IEEE, 2006, 37-38

75
Pelrine R. ElecIroactive polymer devices. <patent>US Patent 6545384</patent>, 4/8/2003

76
El-Hami M, Glynne P, White N, . Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A,2001, 92(1–3): 335-342

DOI

77
Chapman P L, Krein P T. Micromotor technology: Electric drive designer’s perspective. In: Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE. Chicago: IEEE, 2001, 1978-1983

78
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical, 1996, 52(1–3): 8-11

DOI

79
Williams CB, Shearwood C, Harradine M A, . Development of an electromagnetic micro-generator. IEE Proceedings Circuits, Devices and Systems, 2001, 148(6): 337-342

DOI

80
Mizuno M, Chetwynd D G. Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering, 2003, 13(2): 209-216

DOI

81
Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. In: Proc Transducers 2005, Piscataway: IEEE, 2005. 780-783

82
Perez-Rodriguez A, Serre C, Fondevilla N, . Design of electromagnetic inertial generators for energy scavenging applications. In: Proc Eurosensors XIX press. Guimaraes: Eurosensors2005, 344-349

83
Kulah H, Najafi K. An electromagnetic micro power generator for low-frequency environmental vibrations. In: 2004 17th IEEE International Conference on MEMS. Piscataway: IEEE, 2004, 237-240

84
Huang W S, Tzeng K E, Cheng M C, . Design and fabrication of a vibrational micro-generator for wearable MEMS. In: Proc Eurosensors XVII. Barcelona: Eurosensors, 2003, 695-697

85
Scherrer S, Plumlee D G, Moll A J. Energy scavenging device in LTCC materials. IEEE Workshop on Microelectronics and Electron Devices. Piscataway: IEEE, 2005, 77-78

86
Amirtharajah R, Chandrakasan A P, Mit C. Self-powered signal processing using vibration-based powergeneration. IEEE Journal of Solid-State Circuits, 1998, 33(5): 687-695

DOI

87
Beeby S P, Torah R N, Tudor M J, . A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng, 2007, 17(7): 1257-1265

DOI

88
Donnell T. Scaling effects for electromagnetic vibrational power generators. Microsystem Technology, 2007, 13(11-12): 1637-1645

DOI

89
Staley M, Flatau A. Characterization of energy harvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE. Bellingham: SPIE, 2005, 630-640

90
Bayrashev A, Robbins W, Ziaie B. Low frequency wireless powering of microsystems using piezoelectricmagnetostrictive laminate composites. Sensors and Actuators A: Physical, 2004, 114(2-3): 244-249

DOI

91
Huang J, O’Handley R, Bono D. New, high-sensitivity, hybrid magnetostrictive/electroactive magnetic field. In: Sensors Proc SPIE. Bellingham: SPIE, 2003, 229-231

92
Wang L, Yuan F G. Energy harvesting by magnetostrictive material (msm) for powering.Wireless sensors in SHM. In: 2007 SPIE/ASME Best Student Paper Presentation Contest SPIE, Bellingham: SPIE, 2007, 652941

93
Mitcheson P D, Miao P, Stark B H. MEMS electrostatic micropower generator for low frequency operation. Sensors and Actuators, 2004, 115(2-3): 523-529

DOI

94
Büren T V, Mitcheson P D, Green T C. Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 2006, 6(1): 18-38

95
Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. 2004. http://www.perpetuum.co.uk/resource

96
Farmer J R. A comparison of power harvesting techniques and related energy storage issues. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University, 2007, 115-115

97
Büren T V, Lukowicz P, Tröster G. Kinetic energy powered computing- an experimental feasibility study. In: Proc 7th IEEE Int Symposium on Wearable Computers. Washington DC: IEEE Computer Society, 2003, 22-24

98
Miao P, Micheson P, Holmes A, . Mems inertial power generators for biomedical applications. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Berlin: Springer, 2005, 295-298

99
Micheson P, Stark B, Miao P, . Analysis and optimisation of mems on-chip power supply for self powering of slow moving. In: sensors Proc Eurosensors XVII. New York: IEEE, 2003, 30-31

100
Park C, Chou P H. Power utility maximization for multi-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design. Piscataway: IEEE, 2004, 168-173

101
Mitcheson P D, Reilly E K, Toh T, . Performance limits of the three MEMS inertial energy generator transduction types. J Micromech Microeng, 2007, 17(9): 211–216

DOI

102
Siebert J, Collier J, Amirtharajah R. Self-timed circuits for harvesting ac power supplies. In: Proc International Symposium on Low Power Electronics and Design. New York: ACM, 2005, 315-318

103
Niu P, Chapman P, Riemer R, . Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 35th Annul IEEE Power Elecrronics Specialisrs Conference. Piscataway: IEEE, 2004, 2100-2106

104
Yang Y, Wei X, Liu J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D: Appl Phys, 2007, 40(18): 5790-5800

DOI

105
Strasser M, Aigner R, Franosch M,. Miniaturized thermoelectric generators based on poly-si and poly-sige surface micromachining. Sensor and Actuator A, 2002, 97–98: 535-542

DOI

106
Donelan J M, Li Q, Naing V,. Biomechanical energy harvesting: Henerating electricity during walking with minimal user effort. Science, 2008, 319(5864): 807-810

DOI

107
Fletsche R. Force transduction materials for human- technology interfaces. IBM Systems Journal, 1996-35(3-4): 630-638

108
Starner T. Human powered wearable computing. IBM Systems Journal, 1996, 35(3-4): 618-629

109
Yaglioglu O. Modeling and design considerations for a micro-hydraulic piezoelectric power generator. Dissertation for the Doctoral Degree. Cambridge, Mass: Massachusetts Institute of Technology, 2002, 112-115

110
Antaki J F. A gait powered autologous battery charging system for artificial organs. American Society of Artificial Internal Organs Journal, 1995, 41(3): 588-595

111
Shenck N S. A demonstration of useful electric energy generation from piezoceramics in a shoe. Dissertation for the Doctoral Degree. Cambridge, Mass: Massachusetts Institute of Technology, 1999, 210-212

112
Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 2001, 21(3): 30-42

DOI

113
Hayashida J. Unobtrusive integration of magnetic generator systems into common footwear. Dissertation for the Doctoral Degree. Cambridge, Mass: Massachusetts Institute of Technology, 2000, 322-323

114
Paradiso J A, Morris S J. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. Engineering in Medicine and Biology, 2002, 3(3): 2468-2469

115
Vijayaraghavan K, Rajamani R. Active control based energy harvesting for batteryless wireless traffic sensors. In: 2007American Control Conference, New York: IEEE, 2007, 3106-3111

116
Paradiso J, Feldmeier M. A compact, wireless, welf-powered pushbutton controller. In: 2001 Ubiquitous Computing. Berlin: Springer, 2001, 299-304

117
Post E R. Intrabody busses for data and power. In: Proc of the First Int Symposium on Wearable Computers. Cambridge: IEEE, 1997, 52-55

118
Lukowicz P, Ward J A, Junker H,. Recognizing workshop activity using body worn microphones and accelerometers. In: Proc 2nd Int Conf Pervasive Computing, Berlin: Springer, 2004, 18-32

119
Bao L, Intille S S. Activity recognition from user-annotated acceleration data. Lecture Notes in Computer Science (Pervasive Computing), 2004, (3001): 1-17

120
Donelan J M, Kram R, Kuo A D. Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics, 2002, 35(1): 117-124

DOI

121
Kuo A D. Biophysics: Harvesting energy by improving the economy of human walking. Science, 2005, 309(5741): 1686-1687

DOI

122
Granstrom J, Feenstra J, Sodano H A,. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007, 16(5): 1810-1820

DOI

123
Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008, 22(3): 721-734

DOI

124
Goto H, Sugiura T, Harada Y,. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput, 1999, 37(1): 377-380

DOI

125
Siores E. Detection and suppression of muscle tremors. GB(Great Britain) Patent, <patent>0623905</patent>.7/1/2006

126
Tozzi P. Method and device to convert cardiac and other body movements into electricity to power any implantable medical system. US Patent,<patent> 20070078492-A1</patent>, 4/5/2007

127
Ramsey M J, Clark WW. Piezoelectric energy harvesting for bio-MEMS applications. In: Porter D L ed. Proceedings of SPIE’s 8th Annual Smart Materials and Structures Conference, Newport Beach, CA: ETATS-UNIS, 2001, 429-438

128
Myers R, Vickers M, Kim H,. Small scale windmill. Applied Physics Letters, 2007, 90: 054106

DOI

129
Courses E, Surveys T. Nanogenerators and nanopiezotronics. In: 2007 IEEE International Electron Devices Meeting, Washington: IEEE, 2007, 371-374

130
Gao Y, Wang Z. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano letters, 2007, 7(8): 2499-2505

DOI

131
Wang X, Song J, Liu J,. Direct-current nanogenerator driven by ultrasonic waves.Science, 2007, 316(5821): 102

DOI

132
Wang Z. Self-powered nanotech. Scientific American Magazine, 2008, 298(1): 82-87

133
Wang Z L, Wang X, Song J,. Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Computing, 2008, 7(1): 49-55

DOI

134
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809-813

DOI

135
Daiguji H, Yang P, Szeri A J,. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett, 2004, 4(12): 2315-2321

DOI

136
Yang J, Lu F, Kostiuk LW,. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng, 2003, 13(6): 963-970

DOI

137
Perry J L, Kandlikar SG. Review of fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics, 2006, 2(3): 185-193

DOI

138
Channels N. Mass and charge transport in micro and nanofluidic channels. Nanoscale and Microscale Thermophysical Engineering, 2007, 11(1): 57-69

DOI

139
Wu C, Jin Z, Wang H Q,. Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. Journal of Micromechanics and Microengineering, 2007, 17(12): 2393-2397

DOI

Outlines

/