RESEARCH ARTICLE

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

  • Xiaoping CHEN ,
  • Wenfeng SHANGGUAN
Expand
  • Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 29 Oct 2012

Accepted date: 12 Dec 2012

Published date: 05 Mar 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Hydrogen energy has been regarded as the most promising energy resource in the near future due to that it is a clean and sustainable energy. And the heterogeneous photocatalytic hydrogen production is increasingly becoming a research hotspot around the world today. As visible light response photocatalysts for hydrogen production, cadmium sulfide (CdS) is the most representative material, the research of which is of continuing popularity. In the past several years, there has been significant progress in water splitting on CdS-based photocatalysts using solar light, especially in the development of co-catalysts. In this paper, recent researches into photocatalytic water splitting on CdS-based photocatalysts are reviewed, including controllable synthesis of CdS, modifications with different kinds of cocatalysts, solid solution, intercalated with layered nanocomposites and metal oxides, and hybrids with graphenes etc. Finally, the problems and future challenges in photocatalytic water splitting on CdS-based photocatalysts are described.

Cite this article

Xiaoping CHEN , Wenfeng SHANGGUAN . Hydrogen production from water splitting on CdS-based photocatalysts using solar light[J]. Frontiers in Energy, 2013 , 7(1) : 111 -118 . DOI: 10.1007/s11708-012-0228-4

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20973110), the National Basic Research Program of China (No. 2009CN220000) and the International Cooperation Project of Shanghai Municipal Science and Technology Commission (No. 12160705700).
1
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

DOI PMID

2
Shangguan W F. Progress in hydrogen production from water splitting using solar light. Chinese Journal of Inorganic Chemistry, 2001, 17(5): 619–624

3
Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano, 2007, 1(4): 273–278

DOI PMID

4
Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces, 2009, 1(5): 1140–1143

DOI PMID

5
Weng C C, Hsu K F, Wei K H. Synthesis of arrayed TiO2 needlelike nanostructures via a polystyrene-block-poly (4-vinylpyridine) diblock copolymer template. Chemistry of Materials, 2004, 16(21): 4080–4086

DOI

6
Wang H Q, Wu Z B, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2. Journal of Physical Chemistry C, 2009, 113(30): 13317–13324

DOI

7
Wang D A, Liu Y, Wang C W, Zhou F, Liu W M. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. ACS Nano, 2009, 3(5): 1249–1257

DOI PMID

8
Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. Journal of Physical Chemistry B, 2003, 107(23): 5483–5486

DOI

9
Khan S U, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245

DOI PMID

10
Yan H J, Yang J H, Ma G J, Wua G P, Zong X, Lei Z B, Shi J Y, Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalys. Journal of Catalysis, 2009, 266(2): 165–168

DOI

11
Maeda K, Saito N, Lu D, Inoue Y, Domen K. Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting. Journal of Physical Chemistry C, 2007, 111(12): 4749–4755

DOI

12
Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today, 2003, 78(1–4): 555–560

DOI

13
Ohmori T, Mametsuka H, Suzuki E. Photocatalytic hydrogen evolution on InP suspension with inorganic sacricial reducing agent. International Journal of Hydrogen Energy, 2000, 25(10): 953–955

DOI

14
Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society, 2003, 125(10): 3082–3089

DOI PMID

15
Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A. The relationship between photocatalytic activity and crystal structure in strontium tantalates. Journal of Catalysis, 2005, 232(1): 102–107

DOI

16
Domen K, Kudo A, Tanaka A, Onishi T. Overall photodecomposition of water on a layered niobiate catalyst. Catalysis Today, 1990, 8(1): 77–84

DOI

17
Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003, 373(1–2): 191–196

DOI

18
Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R= Y, Rare Earth): Effect on band structure and photocatalytic properties. Journal of Physical Chemistry, 2002, 106(3): 517–520

DOI

19
Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature, 2006, 440(7082): 295

DOI PMID

20
Wang X C, Maeda K, Lee Y, Domen K. Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008, 457(1–3): 134–136

DOI

21
Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society, 2004, 126(41): 13406–13413

DOI PMID

22
Liu H, Yuan J, Shangguan W F, Teraoka Y. Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. Journal of Physical Chemistry C, 2008, 112(23): 8521–8523

DOI

23
Shangguan W F. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81

24
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

DOI PMID

25
Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920

DOI PMID

26
Sathish M, Viswanathan B, Viswanath R P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for watersplitting. International Journal of Hydrogen Energy, 2006, 31(7): 891–898

DOI

27
Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Giersig M, Diaz R, Liz-Marzán L M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(4): 415–420

DOI

28
Liu J K, Luo C X, Yang X H, Zhang X Y. Ultrasonic-template method synthesis of CdS hollow nanoparticle chains. Materials Letters, 2009, 63(1): 124–126

DOI

29
Wang X L, Feng Z C, Fan D Y, Fan F T, Li C. Shape-controlled synthesis of CdS nanostructures via a solvothermal method. Crystal & Growth Design, 2010, 12(12): 5312–5318

30
Yang X H, Wu Q S, Li L, Ding Y P, Zhang G X. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloid and Surfaces A. Physicochemical and Engineering Aspects, 2005, 264(1–3): 172–178

DOI

31
Li C L, Yuan J, Han B Y, Shangguan W F. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2011, 36(7): 4271–4279

DOI

32
Bao N Z, Shen L M, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117

DOI

33
Yu J G, Zhang J, Jaronic M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution. Green Chemistry, 2010, 12(9): 1611–1614

DOI

34
Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. Journal of Physical Chemistry C, 2007, 111(47): 17527–17534

DOI

35
Borgarello E, Kalyanasundaram K, Gratzel M. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2. Helvetica Chimica Acta, 1982, 65(1): 243–248

DOI

36
Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. Interfacial charge carrier dynamics in core shell Au-CdS nanocrystals. Journal of Physical Chemistry C, 2010, 114(26): 11414–11420

DOI

37
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290: 151–157

DOI

38
Shangguan W F. Hydrogen evolution from water splitting on Nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81

39
Luo M, Liu Y, Hu J C, Liu H, Li J L. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Applied Materials & Interfaces, 2012, 4(3): 1813–1821

DOI PMID

40
Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. Journal of Physical Chemistry C, 2010, 114(25): 11215–11220

DOI

41
Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(24): 12202–12208

DOI

42
Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. Journal of Physical Chemistry C, 2010, 114(4): 1963–1968

DOI

43
Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and IO3-/I- shuttle redox mediator under visible light irradiation. Chemical Communications (Cambridge), 2001, (23): 2416–2417

DOI

44
Kato H, Hori M, Konta R, Shimodaira Y, Kudo A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004, 33(10): 1348–1349

DOI

45
Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials, 2006, 5(10): 782–786

DOI PMID

46
Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. Journal of Physical Chemistry B, 2002, 106(47): 12227–12230

DOI

47
Sato T, Masaki K, Sato K, Fujishiro Y, Okuwaki A. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 339–344

DOI

48
Sato T, Sato K, Fujishiro Y, Yoshioka T, Okuwaki A. Photochemical reduction of nitrate to ammonia using layered hydrous Titanate/Cadmium sulphide nanocomposites. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 345–349

DOI

49
Shangguan W F, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Solar Energy Materials and Solar Cells, 2001, 69(2): 189–194

DOI

50
Gao X F, Sun W T, Hu Z D, Ai G, Zhang Y L, Feng S, Li F, Peng L M. Hu Z-D, Ai G, Zhang Y-L, Feng S, Li F, Peng L-M. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. Journal of Physical Chemistry C, 2009, 113(47): 20481–20485

DOI

51
Barpuzary D, Khan Z, Vinothkumar N, De M, Qureshi M. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. Journal of Physical Chemistry C, 2012, 116(1): 150–156

DOI

52
Wang L, Wei H W, Fan Y J, Gu X, Zhan J H. One-dimensional CdS/r-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(32): 14119–14125

DOI

53
Li C L, Yuan J, Han B Y, Jiang L, Shangguan W F. TiO2 Nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(13): 7073–7079

DOI

54
Xing C J, Zhang Y J, Yan W, Guo L J. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2006, 31(14): 2018–2024

DOI

55
Kimi M, Yuliati L, Shamsuddin M. Photocatalytic hydrogen production under visible light over Cd0.1SnxZn09-2xS solid solution photocatalysts. International Journal of Hydrogen Energy, 2011, 36(16): 9453–9461

DOI

56
Ikeue K, Shiiba S, Machida M. Novel Visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chemistry of Materials, 2010, 22(3): 743–745

DOI

57
Xie S L, Lu X H, Zhai T, Gan J Y, Li W, Xu M, Yu M H, Zhang Y M, Tong Y X. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity. Langmuir, 2012, 28(28): 10558–10564

DOI PMID

58
Zhang J, Yu J G, Jaroniec M, Gong J R. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Letters, 2012, 12(9): 4584–4589

DOI PMID

59
Gao P, Liu J C, Lee S, Zhang T, Sun D D. High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2012, 22(5): 2292–2298

DOI

60
Lee H, Heo K, Maaroof A, Park Y, Noh S, Park J, Jian J, Lee C, Seong M J, Hong S. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures. Small, 2012, 8(11): 1650–1656

DOI PMID

61
Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(23): 11466–11473

DOI

62
Gao Z Y, Liu N, Wu D P, Tao W Q, Xu F, Jiang K. Graphene-CdS composite, synthesis and enhanced photocatalytic activity. Applied Surface Science, 2012, 258(7): 2473–2478

DOI

Outlines

/