Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production
Received date: 02 Jan 2024
Accepted date: 14 Mar 2024
Copyright
Solid oxide electrolysis cell (SOEC) is a promising water electrolysis technology that produces hydrogen or syngas through water electrolysis or water and carbon dioxide co-electrolysis. Green hydrogen or syngas can be produced by SOEC with renewable energy. Thus, SOEC has attracted continuous attention in recent years for the urgency of developing environmentally friendly energy sources and achieving carbon neutrality. Focusing on 1276 related articles retrieved from the Web of Science (WoS) database, the historical development of SOECs are depicted from 1983 to 2023 in this paper. The co-occurrence networks of the countries, source journals, and author keywords are generated. Moreover, three main clusters showing different content of the SOEC research are identified and analyzed. Furthermore, the scientometric analysis and the content of the high-cited articles of the research of different topics of SOECs: fuel electrode, air electrode, electrolyte, co-electrolysis, proton-conducting SOECs, and the modeling of SOECs are also presented. The results show that co-electrolysis and proton-conducting SOECs are two popular directions in the study of SOECs. This paper provides a straightforward reference for researchers interested in the field of SOEC research, helping them navigate the landscape of this area of study, locate potential partners, secure funding, discover influential scholars, identify leading countries, and access key research publications.
Shimeng Kang , Zehua Pan , Jinjie Guo , Yexin Zhou , Jingyi Wang , Liangdong Fan , Chunhua Zheng , Suk Won Cha , Zheng Zhong . Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production[J]. Frontiers in Energy, . DOI: 10.1007/s11708-024-0945-5
1 |
Trattner A, Klell M, Radner F. Sustainable hydrogen society—Vision, findings and development of a hydrogen economy using the example of Austria. International Journal of Hydrogen Energy, 2022, 47(4): 2059–2079
|
2 |
Liu X, Yan Z, Wu J.
|
3 |
Kim C, Cho S H, Cho S M.
|
4 |
Guo Q, Geng J, Pan J.
|
5 |
Calandra D, Wang T, Cane M.
|
6 |
Zheng Y, Wang S, Pan Z.
|
7 |
Pan Z, Shi H, Wang S.
|
8 |
Hu S, Li H, Dong X.
|
9 |
Liu R. The world’s first offshore wind power non-desalination of seawater in situ electrolysis for hydrogen production successfully tested in Fujian, China. Frontiers in Energy, 2023, 17(3): 317–319
|
10 |
Akdağ O. The operation and applicability to hydrogen fuel technology of green hydrogen production by water electrolysis using offshore wind power. Journal of Cleaner Production, 2023, 425: 138863
|
11 |
Zheng Y, Wang J, Yu B.
|
12 |
Zhuang Z, Li Y, Yu R.
|
13 |
Pan Z, Shen J, Wang J.
|
14 |
Yang X, Yin Y, Yu S.
|
15 |
Teng Z, Han M. Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality. Frontiers in Energy, 2022, 16(6): 879–882
|
16 |
Liang F, Pan Z, Wang H.
|
17 |
Sai W, Pan Z, Liu S.
|
18 |
Min G, Choi S, Hong J. A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration. Applied Energy, 2022, 328: 120145
|
19 |
Jolaoso L A, Bello I T, Ojelade O A.
|
20 |
Wang W, Tian Y, Liu Y.
|
21 |
Biswas S, Kaur G, Paul G.
|
22 |
Li H Y, Kamlungsua K, Shin J.
|
23 |
Zheng Y, Li Y, Wu T.
|
24 |
Li F, Li Y, Chen H.
|
25 |
Zheng Y, Zhao C, Li Y.
|
26 |
Li Y, Zhang W, Wu T.
|
27 |
Song Y, Kim H, Jang J H.
|
28 |
YuC, PanZ, ZhangH, et al. Numerical multi-physical optimization of operating condition and current collecting setup for large-area solid oxide fuel cells. Frontiers in Energy, 2024, early access, https://doi.org/doi:10.1007/s11708-023-0919-z10.1007/s11708-023-0919-z
|
29 |
Liu H, Clausen L R, Wang L.
|
30 |
Prosser J H, James B D, Murphy B M.
|
31 |
Harman J, Hjalmarsson P, Mermelstein J.
|
32 |
Liu G, Kupecki J, Deng Z.
|
33 |
Li Y, Li Y, Zhang S.
|
34 |
Li Y, Singh M, Zhuang Z.
|
35 |
Lin W, Su W, Li Y.
|
36 |
Monaco F, Lanzini A, Santarelli M. Making synthetic fuels for the road transportation sector via solid oxide electrolysis and catalytic upgrade using recovered carbon dioxide and residual biomass. Journal of Cleaner Production, 2018, 170: 160–173
|
37 |
Hauch A, Küngas R, Blennow P.
|
38 |
Cao J, Li Y, Zheng Y.
|
39 |
Wang Y, Ge X, Lu Q.
|
40 |
Wang Y, Lu Q, Li F.
|
41 |
Zhang W, Liu M, Gu X.
|
42 |
Subotić V, Hochenauer C. Analysis of solid oxide fuel and electrolysis cells operated in a real-system environment: State-of-the-health diagnostic, failure modes, degradation mitigation and performance regeneration. Progress in Energy and Combustion Science, 2022, 93: 101011
|
43 |
Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable & Sustainable Energy Reviews, 2021, 149: 111322
|
44 |
Jiang Y, Chen F, Xia C. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources, 2021, 493: 229713
|
45 |
Cao J, Su C, Ji Y.
|
46 |
Ye L, Xie K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. Journal of Energy Chemistry, 2021, 54: 736–745
|
47 |
Gao Y, Zhang M, Fu M.
|
48 |
Khan M S, Xu X, Knibbe R.
|
49 |
Wang Y, Li W, Ma L.
|
50 |
Chen K, Jiang S P. Surface segregation in solid oxide cell oxygen electrodes: Phenomena, mitigation strategies and electrochemical properties. Electrochemical Energy Reviews, 2020, 3(4): 730–765
|
51 |
Li Z, Zhang H, Xu H.
|
52 |
Küngas R. Review—Electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. Journal of the Electrochemical Society, 2020, 167(4): 044508
|
53 |
Lv X, Chen M, Xie Z.
|
54 |
Song Y, Zhang X, Xie K.
|
55 |
Gu J, Zhang X, Zhao Y.
|
56 |
Tian Y, Abhishek N, Yang C.
|
57 |
Tucker M C. Progress in metal-supported solid oxide electrolysis cells: A review. International Journal of Hydrogen Energy, 2020, 45(46): 24203–24218
|
58 |
Lei L, Zhang J, Yuan Z.
|
59 |
Medvedev D. Trends in research and development of protonic ceramic electrolysis cells. International Journal of Hydrogen Energy, 2019, 44(49): 26711–26740
|
60 |
Liu F, Ding D, Duan C. Protonic ceramic electrochemical cells for synthesizing sustainable chemicals and fuels. Advanced Science, 2023, 10(8): 2206478
|
61 |
Cobo M J, López-Herrera A G, Herrera-Viedma E.
|
62 |
Zhang L, Han K, Wang Y.
|
63 |
Khatun R, Xiang H, Yang Y.
|
64 |
Bello I T, Zhai S, He Q.
|
65 |
PilkingtonA. Bibexcel-Quick Start Guide to Bibliometrics and Citation Analysis. London: World Scientific Publishing, 2018
|
66 |
Liu X, Zhang J, Guo C. Full-text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 2013, 64(9): 1852–1863
|
67 |
Van Eck, N L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2): 523–538
|
68 |
Ozsari I. Trend analysis and evaluation of hydrogen energy and hydrogen storage research. Energy Storage, 2023, 5(6): e471
|
69 |
Raman R, Nair V K, Prakash V.
|
70 |
Wu S, Xu X, Li X.
|
71 |
Li Z, Zhang H, Xu H.
|
72 |
Graves C, Ebbesen S D, Jensen S H.
|
73 |
Graves C, Ebbesen S D, Mogensen M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ionics, 2011, 192(1): 398–403
|
74 |
Tietz F, Sebold D, Brisse A.
|
75 |
Knibbe R, Traulsen M L, Hauch A.
|
76 |
Trini M, Hauch A, De Angelis S.
|
77 |
Hauch A, Ebbesen S D, Jensen S H.
|
78 |
Hauch A, Brodersen K, Chen M.
|
79 |
Lv H, Lin L, Zhang X.
|
80 |
Liu S, Liu Q, Luo J L. Highly stable and efficient catalyst with in situ exsolved Fe−Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catalysis, 2016, 6(9): 6219–6228
|
81 |
Zhou Y, Zhou Z, Song Y.
|
82 |
Li Y, Li Y, Wan Y.
|
83 |
Tsekouras G, Neagu D, Irvine J T S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy & Environmental Science, 2013, 6(1): 256–266
|
84 |
Lv H, Lin L, Zhang X.
|
85 |
Park S, Kim Y, Han H.
|
86 |
Ebbesen S D, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources, 2009, 193(1): 349–358
|
87 |
Kim J, Jun A, Gwon O.
|
88 |
Jensen S H, Graves C, Mogensen M.
|
89 |
HabibollahzadeA, GholamianE, Behzadi A. Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents. Applied Energy, 2019, 233–234: 985–1002 10.1016/j.apenergy.2018.10.075
|
90 |
Tian M W, Yan S R, Han S Z.
|
91 |
Haghghi M A, Holagh S G, Chitsaz A.
|
92 |
Su H N, Lee P C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics, 2010, 85(1): 65–79
|
93 |
De Angelis S, Jørgensen P S, Tsai E H R.
|
94 |
Tanasini P, Cannarozzo M, Costamagna P.
|
95 |
Simwonis D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics, 2000, 132(3–4): 241–251
|
96 |
Mogensen M B, Chen M, Frandsen H L.
|
97 |
Chen G, Guan G, Abliz S.
|
98 |
Saadabadi S A, Illathukandy B, Aravind P V. Direct internal methane reforming in biogas fuelled solid oxide fuel cell: The influence of operating parameters. Energy Science & Engineering, 2021, 9(8): 1232–1248
|
99 |
Hanasaki M, Uryu C, Daio T.
|
100 |
Faes A, Nakajo A, Hessler-Wyser A.
|
101 |
Arrivé C, Delahaye T, Joubert O.
|
102 |
Teng Z Y, Xiao Z, Yang G.
|
103 |
Li Y, Hu B, Xia C.
|
104 |
Liu S, Liu Q, Luo J L. CO2-to-CO conversion on layered perovskite with in situ exsolved Co−Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(44): 17521–17528
|
105 |
Zhang Y Q, Li J H, Sun Y F.
|
106 |
Li Y H, Chen X, Yang Y.
|
107 |
Lv H F, Zhou Y, Zhang X.
|
108 |
Pan Z, Liu Q, Yan Z.
|
109 |
Chen K, Jiang S P. Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36(17): 10541–10549
|
110 |
Keane M, Mahapatra M K, Verma A.
|
111 |
Hjalmarsson P, Sun X, Liu Y L.
|
112 |
Park B K, Zhang Q, Voorhees P W.
|
113 |
Ai N, He S, Li N.
|
114 |
Laguna-Bercero M A, Monzón H, Larrea A.
|
115 |
Li W, Guan B, Ma L.
|
116 |
Yang S, Wen Y, Zhang J.
|
117 |
Lei L, Tao Z, Wang X.
|
118 |
Laguna-Bercero M A, Campana R, Larrea A.
|
119 |
Kim J, Ji H I, Dasari H P.
|
120 |
Ishihara T, Jirathiwathanakul N, Zhong H. Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte. Energy & Environmental Science, 2010, 3(5): 665–672
|
121 |
Gao Z, Zenou V Y, Kennouche D.
|
122 |
Mehranjani A S, Cumming D J, Sinclair D C.
|
123 |
Bi L, Shafi S P, Traversa E. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs). Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(11): 5815–5819
|
124 |
Lyagaeva J, Danilov N, Vdovin G.
|
125 |
Li W, Guan B, Ma L.
|
126 |
Rajendran S, Thangavel N K, Ding H.
|
127 |
Niu B B, Lu C, Yi W.
|
128 |
Chen L, Chen F L, Xia C R. Direct synthesis of methane from CO2−H2O co-electrolysis in tubular solid oxide electrolysis cells. Energy & Environmental Science, 2014, 7(12): 4018–4022
|
129 |
Deka D J, Gunduz S, Fitzgerald T.
|
130 |
Pan Z, Duan C, Pritchard T.
|
131 |
Ebbesen S D, Høgh J, Nielsen K A.
|
132 |
Ni M. 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy, 2012, 37(8): 6389–6399
|
133 |
Ni M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2. Journal of Power Sources, 2012, 202: 209–216
|
134 |
Becker W L, Braun R J, Penev M.
|
135 |
Giglio E, Lanzini A, Santarelli M.
|
136 |
Sun X F, Chen M, Jensen S H.
|
137 |
He F, Song D, Peng R.
|
138 |
Wu W, Ding H, Zhang Y.
|
139 |
Muñoz-García A B, Pavone M. First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: A-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chemistry of Materials, 2016, 28(2): 490–500
|
140 |
Lei L, Zhang J, Guan R.
|
141 |
Salomone F, Giglio E, Ferrero D.
|
142 |
Mastropasqua L, Pecenati I, Giostri A.
|
143 |
Udagawa J, Aguiar P, Brandon N P. Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell. Journal of Power Sources, 2007, 166(1): 127–136
|
144 |
Stoots C M, O’Brien J E, Herring J S.
|
145 |
Cinti G, Baldinelli A, Di Michele A.
|
146 |
AlZahrani A A, Dincer I. Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2016, 41(19): 8042–8056
|
147 |
Sunfire. Successful test operation of the world’s largest high-temperature electrolysis module. 2024, available at the website of Sunfire
|
148 |
Shanghai Institute of Applied Physics, Chinese Academy of Engineering. A successful start of 200-kW SOEC system developed by SINAP. 2024, available at the website of CAS
|
/
〈 | 〉 |