A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting
Received date: 02 Nov 2023
Accepted date: 14 Dec 2023
Published date: 15 Aug 2024
Copyright
With the development of renewable energy technologies, the recovery and utilization of low-grade energy based on hydroelectric effect have drawn much attention owing to its environmental friendliness. Herein, a novel hydroelectric generator utilizing sodium alginate-graphene oxide (SA-GO) fibers is proposed, which is eco-friendly and low-cost. These fibers with a length of 5 cm and a diameter of 0.15 mm can generate an open circuit voltage (Voc) of approximately 0.25 V and a short circuit current (Isc) of 4 μA. By connecting SA-GO fibers in either series or parallel, this combination can power some electronic devices. Furthermore, these fibers enable the recovery of low-grade energy from the atmosphere or around the human body. Both experimental and theoretical analysis confirm that the directional flow of protons driven by water molecules is the main mechanism for power generation of SA-GO fibers. This study not only presents a simple energy transformation method that is expected to be applied to our daily life, but also provides a novel idea for the design of humidity electricity-generation devices.
Feng GONG , Jiaming SONG , Haotian CHEN , Hao LI , Runnan HUANG , Yuhang JING , Peng YANG , Junjie FENG , Rui XIAO . A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting[J]. Frontiers in Energy, 2024 , 18(4) : 474 -482 . DOI: 10.1007/s11708-024-0930-z
1 |
Kılkış Ş, Krajačić G, Duić N.
|
2 |
Zhou Q, Gong F, Xie Y L.
|
3 |
Gong F, Wang W B, Li H.
|
4 |
Kempton W, Pimenta F M, Veron D E.
|
5 |
Gong F, Li H, Wang W B.
|
6 |
Moriarty P. Global nuclear energy: An uncertain future. AIMS Energy, 2021, 9(5): 1027–1042
|
7 |
Wang Z, Tan L, Pan X M.
|
8 |
Cai M J, Yang Z S, Cao J Y.
|
9 |
Fang L, Zheng Q W, Hou W C.
|
10 |
Zhou L M, Liu Y Y, Liu S L.
|
11 |
Wang S J, Gong F, Zhou Q.
|
12 |
Yang C R, Ko C T, Chang S F.
|
13 |
Benadda B, Beldjilali B, Mankouri A.
|
14 |
Nelson E C, Verhagen T, Vollenbroek-Hutten M.
|
15 |
Dolez P I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors, 2021, 21(18): 6297
|
16 |
Jiang G Q, Dong T, Guo Z K. Nonlinear dynamics of an unsymmetric cross-ply square composite laminated plate for vibration energy harvesting. Symmetry, 2021, 13(7): 1261
|
17 |
Song J W, Sun G H, Zeng X.
|
18 |
Li Z, Yuan S M, Ma J.
|
19 |
Zhou Q, Gong F, Xie Y L.
|
20 |
Yadav P, Sahay K, Srivastava M.
|
21 |
Gao H Q, Hu M G, Ding J F.
|
22 |
Sun Z Y, Wen X, Wang L M.
|
23 |
Luo Z L, Liu C H, Fan S S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy, 2019, 60: 371–376
|
24 |
Liang Y, Zhao F, Cheng Z H.
|
25 |
Zhang J, Zhan K, Zhang S S.
|
26 |
Bai J X, Huang Y X, Wang H Y.
|
27 |
Ji L, Zheng K, Zheng L.
|
28 |
Yang C, Huang Y X, Cheng H H.
|
29 |
Zhang Z H, Li X M, Yin J.
|
30 |
Guan W X, Guo Y H, Yu G H. Carbon materials for solar water evaporation and desalination. Small, 2021, 17(48): 2007176
|
31 |
Zhang P X, Liu Y Y, Liu S L, et al. Precise design and modification engineering of single-atom catalytic materials for oxygen reduction. Small, 2024, 20(4): 2305782
|
32 |
Zhang H H, Liu Y Y, Wei H J.
|
33 |
Xu T, Ding X T, Huang Y X.
|
34 |
Xue G B, Xu Y, Ding T P.
|
35 |
Li J, Liu K, Xue G B.
|
36 |
Gong F, Li H, Zhou Q.
|
37 |
Liang Y, Zhao F, Cheng Z H.
|
38 |
Li J H, Xia B L, Xiao X.
|
39 |
Cho H, Kim S, Liang H.
|
40 |
Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 2011, 36(7): 914–944
|
41 |
Yan H P, Liu Z, Qi R H. A review of humidity gradient-based power generator: Devices, materials and mechanisms. Nano Energy, 2022, 101: 107591
|
42 |
Wang K Q, Xu W H, Zhang X.
|
43 |
Zhang P X, Sun K, Liu Y Y.
|
44 |
Zhang P X, Liu Y Y, Wang S L.
|
45 |
Hassan S H, Velayutham T S, Chen Y W.
|
46 |
Li M J, Zong L, Yang W Q.
|
47 |
Shakeri F, Ariaeenejad S, Ghollasi M.
|
48 |
Li Y Q, Zhang H, Fan M Z.
|
49 |
Bae J, Yun T G, Suh B L.
|
50 |
Zhang R, Qu M J, Wang H.
|
51 |
Chen Z D, Song J, Xia Y M.
|
52 |
Gong F, Li H, Huang J G.
|
53 |
Lv Y L, Gong F, Li H.
|
54 |
Abbasi H R, Karimian S M H. Water mass flow rate in a finite SWCNT under electric charge: A molecular dynamic simulation. Journal of Molecular Liquids, 2016, 224: 165–170
|
55 |
Xu Y F, Chen P N, Peng H S. Generating electricity from water through carbon nanomaterials. Chemistry, 2018, 24(24): 6287–6294
|
56 |
Zhao F, Cheng H H, Zhang Z P.
|
57 |
Daripa S, Khawas K, Behere R P.
|
58 |
Li Q J, Zhou M, Yang Q F.
|
59 |
Chen N, Liu Q, Liu C.
|
60 |
Gao X, Xu T, Shao C X.
|
61 |
Lyu Q Q, Peng B L, Xie Z J.
|
62 |
Yang W Q, Lv L L, Li X K.
|
63 |
Bae J, Yun T G, Suh B L.
|
64 |
Sharfarets B P, Kurochkin V E, Sergeev V A. On the operation of an electroacoustic transducer based on electrokinetic phenomena under turbulent fluid motion. Acoustical Physics, 2020, 66(5): 559–563
|
65 |
Yun T G, Bae J, Rothschild A.
|
66 |
Grahame D C. The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 1947, 41(3): 441–501
|
67 |
Hunter R J. Zeta Potential in Colloid Science: Principles and Applications. Cambridge: Academic Press, 1988
|
68 |
Kirby B J, Hasselbrink E F Jr. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 2004, 25(2): 187–202
|
69 |
Olthuis W, Schippers B, Eijkel J, et al. Energy from streaming current and potential. Sensors and Actuators. B, Chemical, 2005, 111–112: 385–389 10.1016/j.snb.2005.03.039
|
70 |
Xue G B, Xu Y, Ding T P.
|
71 |
Xu T, Ding X T, Cheng H H, et al. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Advanced Materials, 2023, early access, https://doi.org/10.1002/adma.202209661
|
72 |
Albayrak C, Barim G, Dag O. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems. Journal of Colloid and Interface Science, 2014, 433: 26–33
|
73 |
Tan J, Fang S M, Zhang Z H.
|
/
〈 | 〉 |