Formic acid dehydrogenation reaction on high-performance PdxAu1−x alloy nanoparticles prepared by the eco-friendly slow synthesis methodology
Received date: 23 May 2023
Accepted date: 06 Jul 2023
Published date: 15 Dec 2023
Copyright
Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the PdxAu1−x (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation.
Yibo GAO , Erjiang HU , Bo HUANG , Zuohua HUANG . Formic acid dehydrogenation reaction on high-performance PdxAu1−x alloy nanoparticles prepared by the eco-friendly slow synthesis methodology[J]. Frontiers in Energy, 2023 , 17(6) : 751 -762 . DOI: 10.1007/s11708-023-0895-3
1 |
PeplowM. Hydrogen economy looks out of reach. Nature, 2004, https://doi.org/10.1038/news041004-13
|
2 |
Singh S K, Zhang X B, Xu Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Journal of the American Chemical Society, 2009, 131(29): 9894–9895
|
3 |
Scofield M E, Liu H, Wong S S. A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chemical Society Reviews, 2015, 44(16): 5836–5860
|
4 |
Li S J, Zhou Y T, Kang X.
|
5 |
Wang W, He T, Yang X.
|
6 |
Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials. Energy & Environmental Science, 2012, 5(12): 9698
|
7 |
Grad O, Mihet M, Dan M.
|
8 |
Nielsen M, Alberico E, Baumann W.
|
9 |
Yi N, Saltsburg H, Flytzani-Stephanopoulos M. Hydrogen production by dehydrogenation of formic acid on atomically dispersed gold on Ceria. ChemSusChem, 2013, 6(5): 816–819
|
10 |
Shen J, Chen W, Lv G.
|
11 |
Wang Y, Liu X. Catalytic hydrolysis of sodium borohydride for hydrogen production using magnetic recyclable CoFe2O4-modified transition-metal nanoparticles. ACS Applied Nano Materials, 2021, 4(10): 11312–11320
|
12 |
Zhang Z, Lu Z, Tan H.
|
13 |
Hong X, Yao Q, Huang M.
|
14 |
Jiang Y, Kang Q, Zhang J.
|
15 |
Dai H, Qiu Y, Dai H.
|
16 |
Huang W, Liu X. The “on–off” switch for on-demand H2 evolution from hydrous hydrazine over Ni8Pt1/C nano-catalyst. Fuel, 2022, 315: 123210
|
17 |
Zheng J, Zhou H, Wang C.
|
18 |
Wang Y, Liu X. Enhanced catalytic performance of cobalt ferrite by a facile reductive treatment for H2 release from ammonia borane. Journal of Molecular Liquids, 2021, 343: 117697
|
19 |
Sun Q, Wang N, Xu Q.
|
20 |
Yang L, Hua X, Su J.
|
21 |
Gao Y, Hu E, Yin G.
|
22 |
Suh M P, Park H, Prasad T.
|
23 |
Lee H, Kang D, Pyen S.
|
24 |
Faroldi B M, Conesa J M, Guerrero-Ruiz A.
|
25 |
Lyu Y, Xie J, Wang D.
|
26 |
Wei K, Wang X, Budiman R.
|
27 |
Bielinski E A, Lagaditis P O, Zhang Y.
|
28 |
Deng M, Ma J, Liu Y.
|
29 |
Mori K, Dojo M, Yamashita H. Pd and Pd–Ag nanoparticles within a macroreticular basic resin: An efficient catalyst for hydrogen production from formic acid decomposition. ACS Catalysis, 2013, 3(6): 1114–1119
|
30 |
Peng W, Liu S, Li X.
|
31 |
Bulushev D, Beloshapkin S, Plyusnin P.
|
32 |
Nasiri R, Gholipour B, Nourmohammadi M.
|
33 |
Alamgholiloo H, Rostamnia S, Hassankhani A.
|
34 |
Doustkhah E, Rostamnia S, Imura M.
|
35 |
Ahadi A, Rostamnia S, Panahi P.
|
36 |
Farajzadeh M, Alamgholiloo H, Nasibipour F.
|
37 |
Yang Y, Xu H, Cao D.
|
38 |
Wang Z, Liang S, Meng X.
|
39 |
Gu X, Lu Z, Jiang H.
|
40 |
Pritchard J, Kesavan L, Piccinini M.
|
41 |
Al-Nayili A, Albdiry M. AuPd bimetallic nanoparticles supported on reduced graphene oxide nanosheets as catalysts for hydrogen generation from formic acid under ambient temperature. New Journal of Chemistry, 2021, 45(22): 10040–10048
|
42 |
Sanchez F, Bocelli L, Motta D.
|
43 |
Dong A, Jiang Q, Zhou Y. Au3Pd1 intermetallic compound as single atom catalyst for formic acid decomposition with highly hydrogen selectivity. International Journal of Hydrogen Energy, 2023, 48(76): 29542–29551
|
44 |
Barlocco I, Capelli S, Lu X.
|
45 |
Feng C, Wang Y, Gao S.
|
46 |
Dai H, Xia B, Wen L.
|
47 |
Gholipour B, Zonouzi A, Shokouhimehr M.
|
48 |
Feng T, Wang J, Gao S.
|
49 |
Cheng J, Gu X, Liu P.
|
50 |
Cao N, Tan S, Luo W.
|
51 |
Yan J, Wang Z, Gu L.
|
52 |
Jin M, Oh D, Park J.
|
53 |
Sun X, Ding Y, Feng G.
|
54 |
Luo Y, Yang Q, Nie W Y.
|
55 |
Zhong H, Iguchi M, Chatterjee M.
|
56 |
Zhong H, Iguchi M, Chatterjee M.
|
57 |
Szumełda T, Drelinkiewicz A, Lalik E.
|
58 |
Tedsree K, Li T, Jones S.
|
59 |
Zhao X, Xu D, Liu K.
|
60 |
Zhao X, Dai P, Xu D.
|
61 |
Kusada K, Wu D, Nanba Y.
|
62 |
Zhang Q, Kusada K, Wu D.
|
63 |
Zhang Q, Kusada K, Wu D.
|
64 |
Deng C, Li Y, Sun W.
|
65 |
Huang B, Kobayashi H, Yamamoto T.
|
66 |
Zhang Z J, Zhang S L, Yao Q L.
|
67 |
Gao S, Wang L, Li H.
|
68 |
Scott R, Wilson O, Oh S.
|
69 |
Zhu C, Guo S, Dong S. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Advanced Materials, 2012, 24(17): 2326–2331
|
70 |
Tan Z, Haneda M, Kitagawa H.
|
71 |
Chu P K, Li L H. Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 2006, 96(2–3): 253–277
|
72 |
Zhang A, Xia J, Yao Q.
|
73 |
Zhang B, Su D. Probing the metal-support interaction in carbon-supported catalysts by using electron microscopy. ChemCatChem, 2015, 7(22): 3639–3645
|
74 |
Guerrero-Ortega L, Ramírez-Meneses E, Cabrera-Sierra R.
|
75 |
Nowicka E, Althahban S, Luo Y.
|
76 |
Costa L, Vasconcelos S, Pinto A.
|
77 |
Jiang K, Xu K, Zou S.
|
/
〈 | 〉 |