Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen
Received date: 29 Jan 2023
Accepted date: 25 Apr 2023
Published date: 15 Feb 2024
Copyright
Sunlight-powered water splitting presents a promising strategy for converting intermittent and virtually unlimited solar energy into energy-dense and storable green hydrogen. Since the pioneering discovery by Honda and Fujishima, considerable efforts have been made in this research area. Among various materials developed, Ga(X)N/Si (X = In, Ge, Mg, etc.) nanoarchitecture has emerged as a disruptive semiconductor platform to split water toward hydrogen by sunlight. This paper introduces the characteristics, properties, and growth/synthesis/fabrication methods of Ga(X)N/Si nanoarchitecture, primarily focusing on explaining the suitability as an ideal platform for sunlight-powered water splitting toward green hydrogen fuel. In addition, it exclusively summarizes the recent progress and development of Ga(X)N/Si nanoarchitecture for photocatalytic and photoelectrochemical water splitting. Moreover, it describes the challenges and prospects of artificial photosynthesis integrated device and system using Ga(X)N/Si nanoarchitectures for solar water splitting toward hydrogen.
Yixin LI , Sharif Md. SADAF , Baowen ZHOU . Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen[J]. Frontiers in Energy, 2024 , 18(1) : 56 -79 . DOI: 10.1007/s11708-023-0881-9
1 |
Liu L, Cheng S, Li J.
|
2 |
Mirandola A, Lorenzini E. Energy, environment and climate: From the past to the future. International Journal of Heat and Technology, 2016, 34(2): 159–164
|
3 |
Zou C, Zhao Q, Zhang G.
|
4 |
Ranasinghe H. Carbon net-zero by 2050: Benefits, challenges and way forward. Journal of Tropical Forestry and Environment, 2022, 12(1): 12
|
5 |
Zeman C, Depken D, Rich M. Research on how the composting process impacts greenhouse gas emissions and global warming. Compost Science & Utilization, 2002, 10(1): 72–86
|
6 |
Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111
|
7 |
Filippov S P, Yaroslavtsev A B. Hydrogen energy: Development prospects and materials. Russian Chemical Reviews, 2021, 90(6): 627–643
|
8 |
Tarkowski R, Uliasz-Misiak B. Towards underground hydrogen storage: A review of barriers. Renewable & Sustainable Energy Reviews, 2022, 162: 112451
|
9 |
Jia T, Huang J, Li R.
|
10 |
Wang Y, Vogel A, Sachs M.
|
11 |
Maeda K. Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2011, 12(4): 237–268
|
12 |
Wang Z, Gu Y, Wang L. Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Frontiers in Energy, 2021, 15(3): 596–599
|
13 |
Privitera S, Muller M, Zwaygardt W.
|
14 |
HadleyD L. Federal technology alert: Ground-source heat pumps applied to federal facilities. Pacific Northwest National Lab Technical Report, Richland, WA, USA, 2001
|
15 |
Idriss H. Toward large-scale hydrogen production from water: What have we learned and what are the main research hurdles to cross for commercialization?. Energy Technology (Weinheim), 2021, 9(2): 2000843
|
16 |
Chen S, Takata T, Domen K. Particulate photocatalysts for overall water splitting. Nature Reviews. Materials, 2017, 2(10): 17050
|
17 |
Kim J H, Kim J H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. Journal of the American Chemical Society, 2012, 134(42): 17478–17481
|
18 |
Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399
|
19 |
Yang Y, Niu S, Han D.
|
20 |
Tao X, Zhao Y, Wang S.
|
21 |
Yamaguchi Y, Kudo A. Visible light responsive photocatalysts developed by substitution with metal cations aiming at artificial photosynthesis. Frontiers in Energy, 2021, 15(3): 568–576
|
22 |
Liu J, Liu N, Li H.
|
23 |
Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43(22): 7520–7535
|
24 |
Wang Z L. Progress in piezotronics and piezo-phototronics. Advanced Materials, 2012, 24(34): 4632–4646
|
25 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38
|
26 |
Kodama T, Gokon N, Yamamoto R. Thermochemical two-step water splitting by ZrO2-supported NixFe3−xO4 for solar hydrogen production. Solar Energy, 2008, 82(1): 73–79
|
27 |
Hu C C, Lee Y L, Teng H. Efficient water splitting over Na1−xKxTaO3 photocatalysts with cubic perovskite structure. Journal of Materials Chemistry, 2011, 21(11): 3824–3830
|
28 |
Wang X, Xu Q, Li M.
|
29 |
Kim J H, Lee J S. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31(20): 1806938
|
30 |
Chen X, Shi R, Chen Q.
|
31 |
Ning X, Lu G. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale, 2020, 12(3): 1213–1223
|
32 |
Kang Z, Si H, Zhang S.
|
33 |
Zhang X, Dong C L, Wang Y.
|
34 |
Yao B, Zhang J, Fan X.
|
35 |
Dong B, Cui J, Qi Y.
|
36 |
Zhang W, Liu M. Modulating carrier transport via defect engineering in solar water splitting devices. ACS Energy Letters, 2019, 4(4): 834–843
|
37 |
Chen H, Zhang M, Tran-Phu T.
|
38 |
Yin W J, Tang H, Wei S H.
|
39 |
Wang S, Liu G, Wang L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chemical Reviews, 2019, 119(8): 5192–5247
|
40 |
SlimaniYHannachi E. Green chemistry and sustainable nanotechnological developments: Principles, designs, applications, and efficiency. In: Rawat N K, Stoica I, Haghi A K, eds. Green Polymer Chemistry and Composites. New York: Apple Academic Press, 2021
|
41 |
Osterloh F E, Parkinson B A. Recent developments in solar water-splitting photocatalysis. MRS Bulletin, 2011, 36(1): 17–22
|
42 |
Lubitz W, Reijerse E J, Messinger J. Solar water-splitting into H2 and O2: Design principles of photosystem II and hydrogenases. Energy & Environmental Science, 2008, 1(1): 15–31
|
43 |
Rajaambal S, Sivaranjani K, Gopinath C S. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127(1): 33–47
|
44 |
Shaikh J, Shaikh N, Mishra Y K.
|
45 |
Takata T, Domen K. Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Transactions (Cambridge, England), 2017, 46(32): 10529–10544
|
46 |
Luo Z, Wang T, Gong J. Single-crystal silicon-based electrodes for unbiased solar water splitting: Current status and prospects. Chemical Society Reviews, 2019, 48(7): 2158–2181
|
47 |
Chowdhury F A, Mi Z, Kibria M G.
|
48 |
ChuSKongX VankaS,
|
49 |
Wang W, Zheng Y, Li X.
|
50 |
Dong W J, Mi Z. One-dimensional III-nitrides: Towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(11): 5427–5459
|
51 |
Lin J, Wang W, Li G. Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Advanced Functional Materials, 2020, 30(52): 2005677
|
52 |
Hölzel S, Zyuzin M V, Wallys J.
|
53 |
Monavarian M, Rashidi A, Feezell D. A decade of nonpolar and semipolar III-nitrides: A review of successes and challenges. Physica Status Solidi (a), 2019, 216: 1800628
|
54 |
DenBaarsSKeller S. Metalorganic chemical vapor deposition (MOCVD) of group III nitrides. In: Pankove J, Moustakas T, eds. Semiconductors and Semimetals. Elsevier, 1997
|
55 |
di Forte Poisson M A, Magis M, Tordjman M.
|
56 |
Jain S, Willander M, Narayan J.
|
57 |
Chiou W T, Wu W Y, Ting J M. Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials, 2003, 12(10–11): 1841–1844
|
58 |
Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications. Vacuum, 2000, 56(3): 159–172
|
59 |
Bui T Q, Biacchi A J, Dennis C L.
|
60 |
Serban E A, Åke Persson P O, Poenaru I.
|
61 |
Prabaswara A, Birch J, Junaid M.
|
62 |
Wang X, Yoshikawa A. Molecular beam epitaxy growth of GaN, AlN and InN. Progress in Crystal Growth and Characterization of Materials, 2004, 48–49: 42–103
|
63 |
Vanka S, Arca E, Cheng S.
|
64 |
Sadaf S, Ra Y, Szkopek T.
|
65 |
Sadaf S, Zhao S, Wu Y.
|
66 |
Sadaf S, Ra Y H, Zhao S.
|
67 |
Yoshikawa A, Che S, Ishitani Y.
|
68 |
Zhao S, Mi Z. Recent advances on p-type III-nitride nanowires by molecular beam epitaxy. Crystals, 2017, 7(9): 268
|
69 |
Izyumskaya N, Avrutin V, Ding K.
|
70 |
Roul B, Kumar M, Rajpalke M K.
|
71 |
Lin S C, Kuo C T, Liu X.
|
72 |
Wu C, Kahn A. Electronic states and effective negative electron affinity at cesiated p-GaN surfaces. Journal of Applied Physics, 1999, 86(6): 3209–3212
|
73 |
Kibria M G, Qiao R, Yang W.
|
74 |
LiuDZhuY GuoH,
|
75 |
Wang J, Pedroza L S, Poissier A.
|
76 |
Ertem M Z, Kharche N, Batista V S.
|
77 |
Kibria M, Mi Z. Artificial photosynthesis using metal/nonmetal-nitride semiconductors: Current status, prospects, and challenges. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(8): 2801–2820
|
78 |
Vanka S, Arca E, Cheng S.
|
79 |
Chang K, Hai X, Ye J. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Advanced Energy Materials, 2016, 6(10): 1502555
|
80 |
Xiong J, Liu Y, Wang D.
|
81 |
Dong W J, Xiao Y, Yang K R.
|
82 |
Chiang T H, Lyu H, Hisatomi T.
|
83 |
Zeng G, Pham T A, Vanka S.
|
84 |
Yang Y, Zhang K, Lin H.
|
85 |
Wang J, Zhang M, Yang G.
|
86 |
Ma B, Dang Y, Li D.
|
87 |
Asai R, Nemoto H, Jia Q.
|
88 |
Lin F, Wang D, Jiang Z.
|
89 |
Schubert J S, Popovic J, Haselmann G M.
|
90 |
Wang Y, Vanka S, Gim J.
|
91 |
Zhang Z, Yates J T Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chemical Reviews, 2012, 112(10): 5520–5551
|
92 |
Kibria M, Chowdhury F, Zhao S.
|
93 |
Sadaf S, Ra Y H, Nguyen H.
|
94 |
Fan S, AlOtaibi B, Woo S Y.
|
95 |
Wang D, Pierre A, Kibria M G.
|
96 |
Guan X, Chowdhury F A, Wang Y.
|
97 |
Yue X, Yi S, Wang R.
|
98 |
Wang S, Guan B Y, Lou X W D. Rationally designed hierarchical N-doped carbon@ NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy & Environmental Science, 2018, 11(2): 306–310
|
99 |
Chowdhury F A, Trudeau M L, Guo H.
|
100 |
Kibria M G, Nguyen H P, Cui K.
|
101 |
Wang Y, Wu Y, Sun K.
|
102 |
AlOtaibi B, Harati M, Fan S.
|
103 |
Zhou B, Kong X, Vanka S.
|
104 |
Zhou B, Ou P, Rashid R T.
|
/
〈 | 〉 |