PERSPECTIVE

Operando modeling and measurements: Powerful tools for revealing the mechanism of alkali carbonate-based sorbents for CO2 capture in real conditions

  • Tianyi CAI , 1 ,
  • Mengshi WANG 1 ,
  • Xiaoping CHEN 2 ,
  • Ye WU 3 ,
  • Jiliang MA 2 ,
  • Wu ZHOU 1
Expand
  • 1. School of Energy and Power Engineering, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2. Key Laboratory of Energy Thermal Conversion and Control of the Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
  • 3. Key Laboratory of Thermal Control of Electronic Equipment and Advanced Combustion Laboratory of the Ministry of Industry and Information Technology, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
tycai@usst.edu.cn

Received date: 16 Aug 2022

Accepted date: 07 Feb 2023

Copyright

2023 Higher Education Press 2023

Abstract

Alkali carbonate-based sorbents (ACSs), including Na2CO3- and K2CO3-based sorbents, are promising for CO2 capture. However, the complex sorbent components and operation conditions lead to the versatile kinetics of CO2 sorption on these sorbents. This paper proposed that operando modeling and measurements are powerful tools to understand the mechanism of sorbents in real operating conditions, facilitating the sorbent development, reactor design, and operation parameter optimization. It reviewed the theoretical simulation achievements during the development of ACSs. It elucidated the findings obtained by utilizing density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD) simulations, and classical molecular dynamics (CMD) simulations as well. The hygroscopicity of sorbent and the humidity of gas flow are crucial to shifting the carbonation reaction from the gas−solid mode to the gas−liquid mode, boosting the kinetics. Moreover, it briefly introduced a machine learning (ML) approach as a promising method to aid sorbent design. Furthermore, it demonstrated a conceptual compact operando measurement system in order to understand the behavior of ACSs in the real operation process. The proposed measurement system includes a micro fluidized-bed (MFB) reactor for kinetic analysis, a multi-camera sub-system for 3D particle movement tracking, and a combined Raman and IR sub-system for solid/gas components and temperature monitoring. It is believed that this system is useful to evaluate the real-time sorbent performance, validating the theoretical prediction and promoting the industrial scale-up of ACSs for CO2 capture.

Cite this article

Tianyi CAI , Mengshi WANG , Xiaoping CHEN , Ye WU , Jiliang MA , Wu ZHOU . Operando modeling and measurements: Powerful tools for revealing the mechanism of alkali carbonate-based sorbents for CO2 capture in real conditions[J]. Frontiers in Energy, 2023 , 17(3) : 380 -389 . DOI: 10.1007/s11708-023-0872-x

Acknowledgements

This work was supported by the Shanghai Sailing Program (Grant No. 22YF1429600), and the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province (Grant No. BK20220001).

Competing interests

The authors declare that they have no competing interests.
1
Hirano S, Shigemoto N, Yamada S. . Cyclic fixed-bed operations over K2CO3-on-carbon for the recovery of carbon dioxide under moist conditions. Bulletin of the Chemical Society of Japan, 1995, 68(3): 1030–1035

DOI

2
Hayashi H, Taniuchi J, Furuyashiki N. . Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Industrial & Engineering Chemistry Research, 1998, 37(1): 185–191

DOI

3
Liang Y, Harrison D P, Gupta R P. . Carbon dioxide capture using dry sodium-based sorbents. Energy & Fuels, 2004, 18(2): 569–575

DOI

4
Green D A, Turk B S, Gupta R P. . Capture of carbon dioxide from flue gas using solid regenerable sorbents. International Journal of Environmental Technology and Management, 2004, 4(1/2): 53–67

DOI

5
Zhao C, Chen X, Anthony E J. . Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534

DOI

6
Wu Y, Chen X, Ma J. . System integration for coal-fired power plant with post combustion CO2 capture: Comparative study for different solid dry sorbents. Fuel, 2020, 280: 118561

DOI

7
Ju Y, Lee C H. Dynamic modeling of a dual fluidized-bed system with the circulation of dry sorbent for CO2 capture. Applied Energy, 2019, 241: 640–651

DOI

8
Ma J, Zhong J, Bao X. . Continuous CO2 capture performance of K2CO3/Al2O3 sorbents in a novel two-stage integrated bubbling-transport fluidized reactor. Chemical Engineering Journal, 2021, 404: 126465

DOI

9
Luis P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 2016, 380: 93–99

DOI

10
Xie W, Chen X, Ma J. . Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents. Applied Energy, 2019, 252: 113434

DOI

11
Wu Y, Chen X, Ma J. . System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents. Energy, 2020, 211: 118554

DOI

12
Bonaventura D, Chacartegui R, Valverde J M. . Carbon capture and utilization for sodium bicarbonate production assisted by solar thermal power. Energy Conversion and Management, 2017, 149: 860–874

DOI

13
Bonaventura D, Chacartegui R, Valverde J M. . Dry carbonate process for CO2 capture and storage: Integration with solar thermal power. Renewable & Sustainable Energy Reviews, 2018, 82: 1796–1812

DOI

14
Reynolds A J, Verheyen T V, Adeloju S B. . Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: Key considerations for solvent management and environmental impacts. Environmental Science & Technology, 2012, 46(7): 3643–3654

DOI

15
Zhao C, Chen X, Zhao C. . Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture. Energy & Fuels, 2009, 23(3): 1766–1769

DOI

16
Dong W, Chen X, Wu Y. . Carbonation characteristics of dry sodium-based sorbents for CO2 capture. Energy & Fuels, 2012, 26(9): 6040–6046

DOI

17
Bararpour S T, Karami D, Mahinpey N. Post-combustion CO2 capture using supported K2CO3: Comparing physical mixing and incipient wetness impregnation preparation methods. Chemical Engineering Research & Design, 2018, 137: 319–328

DOI

18
Chaiwang S C, Sema T. . Statistical experimental design for carbon dioxide capture in circulating fluidized bed using computational fluid dynamics simulation: Effect of operating parameters. Journal of Applied Science and Engineering, 2020, 23(2): 303–317

19
Zhao C, Chen X, Zhao C. Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. Chemosphere, 2009, 75(10): 1401–1404

DOI

20
Ryu D Y, Jo S, Kim T Y. . CO2 sorption and regeneration properties of K2CO3/Al2O3-based sorbent at high pressure and moderate temperature. Applied Sciences (Basel, Switzerland), 2022, 12(6): 2989

DOI

21
Bararpour S T, Karami D, Mahinpey N. Utilization of mesoporous alumina-based supports synthesized by a surfactant-assisted technique for post-combustion CO2 capture. Journal of Environmental Chemical Engineering, 2021, 9(4): 105661

DOI

22
Khuong D A, Trinh K T, Nakaoka Y. . The investigation of activated carbon by K2CO3 activation: Micropores-and macropores-dominated structure. Chemosphere, 2022, 299: 134365

DOI

23
Kazemi H, Shahhosseini S, Bazyari A. . A study on the effects of textural properties of γ-Al2O3 support on CO2 capture capacity of Na2CO3. Process Safety and Environmental Protection, 2020, 138: 176–185

DOI

24
Dong W, Chen X, Yu F. . Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture. Energy & Fuels, 2015, 29(2): 968–973

DOI

25
Chen X, Dong W, Yu F. CO2 capture using dry TiO2-doped Na2CO3/Al2O3 sorbents in a fluidized-bed reactor. Journal of Southeast University (Natural Science Edition), 2015, 31(2): 200–225

26
Wu Y, Cai T, Zhao W. . First-principles and experimental studies of [ZrO(OH)]+ or ZrO(OH)2 for enhancing CO2 desorption kinetics–imperative for significant reduction of CO2 capture energy consumption. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(36): 17671–17681

DOI

27
Nasiman T, Kanoh H. CO2 capture by a K2CO3–carbon composite under moist conditions. Industrial & Engineering Chemistry Research, 2020, 59(8): 3405–3412

DOI

28
Cai T, Chen X, Zhong J. . Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 2020, 395: 124139

DOI

29
Kim K, Yang S, Lee J B. . Analysis of K2CO3/Al2O3 CO2 sorbent tested with coal-fired power plant flue gas: Effect of SOx. International Journal of Greenhouse Gas Control, 2012, 9: 347–354

DOI

30
Duan Y, Zhang B, Sorescu D C. . CO2 capture properties of M–C–O–H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study. Journal of Solid State Chemistry, 2011, 184(2): 304–311

DOI

31
Duan Y, Zhang B, Sorescu D C. . Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K. Journal of Physics Condensed Matter, 2012, 24(32): 325501–325516

DOI

32
Duan Y, Luebke D R, Pennline H W. . Ab initio thermodynamic study of the CO2 capture properties of potassium carbonate sesquihydrate, K2CO3·1.5H2O. Journal of Physical Chemistry C, 2012, 116(27): 14461–14470

DOI

33
Liu W, Wu Y, Cai T. . A molding method of Na2CO3/Al2O3 sorbents with high sphericity and low roughness for enhanced attrition resistance in CO2 sorption/desorption process via extrusion-spheronization method. Powder Technology, 2020, 366: 520–526

DOI

34
Luo H, Chioyama H, Thürmer S. . Kinetics and structural changes in CO2 capture of K2CO3 under a moist condition. Energy & Fuels, 2015, 29(7): 4472–4478

DOI

35
Jayakumar A, Gomez A, Mahinpey N. Post-combustion CO2 capture using solid K2CO3: Discovering the carbonation reaction mechanism. Applied Energy, 2016, 179: 531–543

DOI

36
Jaiboon O, Chalermsinsuwan B, Mekasut L. . Effect of flow patterns/regimes on CO2 capture using K2CO3 solid sorbent in fluidized bed/circulating fluidized bed. Chemical Engineering Journal, 2013, 219: 262–272

DOI

37
Nimvari M I, Zarghami R, Rashtchian D. Experimental investigation of bubble behavior in gas-solid fluidized bed. Advanced Powder Technology, 2020, 31(7): 2680–2688

DOI

38
Gao H, Pishney S, Janik M J. First principles study on the adsorption of CO2 and H2O on the K2CO3(001) surface. Surface Science, 2013, 609: 140–146

DOI

39
Liu H, Qin Q, Zhang R. . Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: A DFT study. Physical Chemistry Chemical Physics, 2017, 19(35): 24357–24368

DOI

40
Shi X, Lin X, Luo R. . Dynamics of heterogeneous catalytic processes at operando conditions. JACS Au, 2021, 1(12): 2100–2120

DOI

41
Cai T, Chen X, Johnson J K. . Understanding and improving the kinetics of bulk carbonation on sodium carbonate. Journal of Physical Chemistry C, 2020, 124(42): 23106–23115

DOI

42
Cai T, Johnson J K, Wu Y. . Toward understanding the kinetics of CO2 capture on sodium carbonate. ACS Applied Materials & Interfaces, 2019, 11(9): 9033–9041

DOI

43
Zhao W, Wu Y, Cai T. . Density functional theory and reactive dynamics study of catalytic performance of TiO2 on CO2 desorption process with KHCO3/TiO2/Al2O3 sorbent. Molecular Catalysis, 2017, 439143–439154

DOI

44
Iftimie R, Minary P, Tuckerman M E. Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6654–6659

DOI

45
Cai T, Chen X, Tang H. . Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity. Journal of CO2 Utilization, 2021, 53: 101737

DOI

46
Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chemical Communications (Cambridge), 2013, 49(30): 3071–3094

DOI

47
Zhang L, Lu Y, Rostam-Abadi M. Sintering of calcium oxide (CaO) during CO2 chemisorption: A reactive molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14(48): 16633–16643

DOI

48
Lan G, Li J, Zhang G. . Thermal decomposition mechanism study of 3-nitro-1,2,4-triazol-5-one (NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel, 2021, 295: 120655

DOI

49
Yu K, Tang H, Cai T. . Mechanism of kaolinite’s influence on sodium release characteristics of high-sodium coal under oxy-steam combustion conditions. Fuel, 2021, 290: 119812

DOI

50
Borodin O, Olguin M, Spear C E. . Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology, 2015, 26(35): 354003

DOI

51
Wang M, Xu Q, Tang H. . Machine learning-enabled prediction and high-throughput screening of polymer membranes for pervaporation separation. ACS Applied Materials & Interfaces, 2022, 14(6): 8427–8436

DOI

52
Lv X, Wei W, Huang B. . High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Letters, 2021, 21(4): 1871–1878

DOI

53
Li J, Gong J. Operando characterization techniques for electrocatalysis. Energy & Environmental Science, 2020, 13(11): 3748–3779

DOI

54
Yang Y, Xiong Y, Zeng R. . Operando methods in electrocatalysis. ACS Catalysis, 2021, 11(3): 1136–1178

DOI

55
Dong X, Cui Z, Sun Y. . Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): A combined operando and theoretical investigation. ACS Catalysis, 2021, 11(13): 8132–8139

DOI

56
Chakrabarti A, Ford M E, Gregory D. . A decade+ of operando spectroscopy studies. Catalysis Today, 2017, 283: 27–53

57
Peltzer D, Múnera J, Cornaglia L. The effect of the Li:Na molar ratio on the structural and sorption properties of mixed zirconates for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 2019, 7(2): 102927

DOI

58
Braglia L, Fracchia M, Ghigna P. . Understanding solid-gas reaction mechanisms by operando soft X-ray absorption spectroscopy at ambient pressure. Journal of Physical Chemistry C, 2020, 124(26): 14202–14212

DOI

59
Yan J, Shen T, Wang P. . Redox performance of manganese ore in a fluidized bed thermogravimetric analyzer for chemical looping combustion. Fuel, 2021, 295: 120564

DOI

60
Liu L, Li Z, Li Z. . Fast redox kinetics of a perovskite oxygen carrier measured using micro-fluidized bed thermogravimetric analysis. Proceedings of the Combustion Institute, 2021, 38(4): 5259–5269

DOI

61
Yu J, Zeng X, Zhang G. . Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed. Environmental Science & Technology, 2013, 47(13): 7514–7520

DOI

62
Li Y, Li Z, Wang H. . CaO carbonation kinetics determined using micro-fluidized bed thermogravimetric analysis. Fuel, 2020, 264: 116823

DOI

63
Zhou W, Zhang Y, Chen B. . Sensitivity analysis and measurement uncertainties of a two-camera depth from defocus imaging system. Experiments in Fluids, 2021, 62(11): 224

DOI

64
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chemical Society Reviews, 2021, 50(5): 3519–3564

DOI

Outlines

/