Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A review of challenges and potential solutions
Received date: 29 Oct 2022
Accepted date: 29 Dec 2022
Published date: 15 Feb 2023
Copyright
To reduce the levelized cost of energy for concentrating solar power (CSP), the outlet temperature of the solar receiver needs to be higher than 700 °C in the next-generation CSP. Because of extensive engineering application experience, the liquid-based receiver is an attractive receiver technology for the next-generation CSP. This review is focused on four of the most promising liquid-based receivers, including chloride salts, sodium, lead-bismuth, and tin receivers. The challenges of these receivers and corresponding solutions are comprehensively reviewed and classified. It is concluded that combining salt purification and anti-corrosion receiver materials is promising to tackle the corrosion problems of chloride salts at high temperatures. In addition, reducing energy losses of the receiver from sources and during propagation is the most effective way to improve the receiver efficiency. Moreover, resolving the sodium fire risk and material compatibility issues could promote the potential application of liquid-metal receivers. Furthermore, using multiple heat transfer fluids in one system is also a promising way for the next-generation CSP. For example, the liquid sodium is used as the heat transfer fluid while the molten chloride salt is used as the storage medium. In the end, suggestions for future studies are proposed to bridge the research gaps for > 700 °C liquid-based receivers.
Ya-Ling HE , Wenqi WANG , Rui JIANG , Mingjia LI , Wenquan TAO . Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A review of challenges and potential solutions[J]. Frontiers in Energy, 2023 , 17(1) : 16 -42 . DOI: 10.1007/s11708-023-0866-8
1 |
Li M J, Zhu H H, Guo J Q.
|
2 |
Heywood H. Solar energy: a challenge to the future. Nature, 1957, 180(4577): 115–118
|
3 |
Lewis N S. Toward cost-effective solar energy use. Science, 2007, 315(5813): 798–801
|
4 |
Kraemer D, Jie Q, McEnaney K.
|
5 |
He Y L, Wang K, Qiu Y.
|
6 |
Al-Ashouri A, Köhnen E, Li B.
|
7 |
NREL
|
8 |
Khamlich I, Zeng K, Flamant G.
|
9 |
Merchán R, Santos M, Medina A.
|
10 |
Lilliestam J, Labordena M, Patt A.
|
11 |
Pitz-Paal R. Concentrating solar power: Still small but learning fast. Nature Energy, 2017, 2(7): 17095
|
12 |
Wang K, He Y L. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energy Conversion and Management, 2017, 135: 336–350
|
13 |
Qiu Y, Li M J, He Y L.
|
14 |
He Y L, Qiu Y, Wang K.
|
15 |
Guo J Q, Li M J, He Y L.
|
16 |
GauchePShultzAStappD,
|
17 |
Wang K, Li M J, Zhang Z D.
|
18 |
Ho C K, Iverson B D. Review of high-temperature central receiver designs for concentrating solar power. Renewable & Sustainable Energy Reviews, 2014, 29: 835–846
|
19 |
Wang W Q, Jiang R, He Y L.
|
20 |
Jiang R, Li M J, Wang W Q.
|
21 |
Du S, Li M J, Ren Q L.
|
22 |
BurgaletaJ IAriasSRamirezD. Gemasolar, the first tower thermosolar commercial plant with molten salt storage. In:17th SolarPACES Conference, Granada, Spain, 2011
|
23 |
PachecoJ EBradshawR WDawsonD B,
|
24 |
Turchi C S, Vidal J, Bauer M. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Solar Energy, 2018, 164: 38–46
|
25 |
Pérez-Álvarez R, González-Gómez P Á, Santana D.
|
26 |
Wetzel T, Pacio J, Marocco L D.
|
27 |
Zhang Q, Cao D, Ge Z.
|
28 |
Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Solar Energy Materials and Solar Cells, 2016, 157: 234–244
|
29 |
Keny S, Gupta V, Kumbhar A G.
|
30 |
MehosMTurchiCVidalJ,
|
31 |
Fernández A G, Gomez-Vidal J, Oró E.
|
32 |
Wermac
|
33 |
Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts. Applied Energy, 2017, 195: 819–836
|
34 |
WangXXuXElsentriecyH,
|
35 |
Vidal J C, Klammer N. Molten chloride technology pathway to meet the US DOE sunshot initiative with Gen3 CSP. AIP Conference Proceedings, 2019, 2126(1): 080006
|
36 |
Ding W, Bauer T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering (Beijing), 2021, 7(3): 334–347
|
37 |
D’Souza B, Zhuo W, Yang Q.
|
38 |
Vignarooban K, Xu X, Wang K.
|
39 |
Ong T C, Sarvghad M, Lippiatt K.
|
40 |
Cho H S, Van Zee J, Shimpalee S.
|
41 |
Garcia-Diaz B L, Olson L, Martinez-Rodriguez M.
|
42 |
Sun H, Wang J Q, Tang Z.
|
43 |
Ding W, Gomez-Vidal J, Bonk A.
|
44 |
Zhang Z, Lu X, Yan Y.
|
45 |
Kipouros G J, Sadoway D R. A thermochemical analysis of the production of anhydrous MgCl2. Journal of Light Metals, 2001, 1(2): 111–117
|
46 |
Kurley J M, Halstenberg P W, McAlister A.
|
47 |
Chen G S, Sun I W, Sienerth K D.
|
48 |
ZhaoY. Molten chloride thermophysical properties, chemical optimization, and purification. Technical Report, National Renewable Energy Laboratories, 2020
|
49 |
de Bakker J, Peacey J, Davis B. Thermal decomposition studies on magnesium hydroxychlorides. Canadian Metallurgical Quarterly, 2012, 51(4): 419–423
|
50 |
Fernández A G, Cabeza L F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: thermal treatment assessment. Journal of Energy Storage, 2020, 27: 101125
|
51 |
Kashani-Nejad S, Ng K, Harris R. Preparation of MgOHCl by controlled dehydration of MgCl2·6H2O. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2004, 35(2): 405–406
|
52 |
Kipouros G J, Sadoway D R. The chemistry and electrochemistry of magnesium production. Advances in Molten Salt Chemistry, 1987, 6: 127–209
|
53 |
Ding W, Shi H, Jianu A.
|
54 |
Zhao Y, Klammer N, Vidal J. Purification strategy and effect of impurities on corrosivity of dehydrated carnallite for thermal solar applications. RSC Advances, 2019, 9(71): 41664–41671
|
55 |
Zhao Y, Vidal J. Potential scalability of a cost-effective purification method for MgCl2-containing salts for next-generation concentrating solar power technologies. Solar Energy Materials and Solar Cells, 2020, 215: 110663
|
56 |
AlkhamisM. Stability of metals in molten chloride salt at 800 °C. Dissertation for the Master’s Degree. Tucson: The University of Arizona, 2016
|
57 |
StoddardLAndrewDAdamsS,
|
58 |
HuangS YMortzheimJSamarovV,
|
59 |
Shingledecker J, de Barbadillo J, O’Donnell D.
|
60 |
Gomez-Vidal J C, Fernandez A, Tirawat R.
|
61 |
Ding W, Shi H, Xiu Y.
|
62 |
Tristancho-Reyes J, Chacón-Nava J, Peña-Ballesteros D.
|
63 |
Fernández A G, Cabeza L F. Anodic protection assessment using alumina-forming alloys in chloride molten salt for CSP plants. Coatings, 2020, 10(2): 138
|
64 |
Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. npj Materials Degradation, 2017, 1(1): 1–9
|
65 |
Ding W, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts. AIP Conference Proceedings, 2019, 2126(1): 200014
|
66 |
Gomez-Vidal J, Fernandez A, Tirawat R.
|
67 |
Chavez J M, Chaza C. Testing of a porous ceramic absorber for a volumetric air receiver. Solar Energy Materials, 1991, 24(1−4): 172–181
|
68 |
Patil V R, Kiener F, Grylka A.
|
69 |
Barreto G, Canhoto P, Collares-Pereira M. Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam. Energy, 2020, 200: 117476
|
70 |
WalkerMArmijoK MYellowhairJ,
|
71 |
Armijo K M, Walker M, Christian J.
|
72 |
Caccia M, Tabandeh-Khorshid M, Itskos G.
|
73 |
Xu X, Wang X, Li P.
|
74 |
Wang W Q, Qiu Y, Li M J.
|
75 |
He Y L, Xiao J, Cheng Z D.
|
76 |
Qiu Y, He Y L, Li P W.
|
77 |
HoC KMahoneyA RAmbrosiniA,
|
78 |
Wang W Q, Li M J, Jiang R.
|
79 |
Coventry J, Burge P. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications. AIP Conference Proceedings, 2017, 1850(1): 030012
|
80 |
Zhang K, Hao L, Du M.
|
81 |
Xu K, Du M, Hao L.
|
82 |
Shah A A, Ungaro C, Gupta M C. High temperature spectral selective coatings for solar thermal systems by laser sintering. Solar Energy Materials and Solar Cells, 2015, 134: 209–214
|
83 |
Dan A, Barshilia H C, Chattopadhyay K.
|
84 |
Zhang W, Wang B, Zhao C. Selective thermophotovoltaic emitter with a periodic multilayer structures designed by machine learning. ACS Applied Energy Materials, 2021, 4(2): 2004–2013
|
85 |
Barshilia H C, Kumar P, Rajam K.
|
86 |
Li P, Liu B, Ni Y.
|
87 |
Yang J, Shen H, Yang Z.
|
88 |
Wang X, Lee E, Xu C.
|
89 |
Li Y, Lin C, Wu Z.
|
90 |
Chirumamilla A, Yang Y, Salazar M H.
|
91 |
Garbrecht O, Al-Sibai F, Kneer R.
|
92 |
GarbrechtOAl-SibaiFKneerR,
|
93 |
Slootweg M, Craig K, Meyer J P. A computational approach to simulate the optical and thermal performance of a novel complex geometry solar tower molten salt cavity receiver. Solar Energy, 2019, 187: 13–29
|
94 |
FriefieldJFriedmanJ. Technical report No. 1: Solar thermal power systems baded on optical transmission. Technical Report, Rocketdyne Division, Rockwell International, 1974
|
95 |
Ho C K, Christian J M, Ortega J D.
|
96 |
Yellowhair J, Ho C K, Ortega J D.
|
97 |
ChristianJ MOrtegaJ DHoC K,
|
98 |
HoC KOrtegaJ DChristianJ M,
|
99 |
OrtegaJ DChristianJ MHoC K. Design and testing of a novel bladed receiver. In: ASME International Conference on Energy Sustainability, Charlotte, USA, 2017
|
100 |
Wang W Q, Qiu Y, Li M J.
|
101 |
Wang W Q, He Y L, Jiang R. A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower. Renewable Energy, 2022, 200: 714–723
|
102 |
WilliamBStineM G. Power from the sun. 2022-5-2, available at website of Power from the Sun book
|
103 |
Schmitz M, Schwarzbözl P, Buck R.
|
104 |
Li L, Wang B, Pye J.
|
105 |
McEnaney K, Weinstein L, Kraemer D.
|
106 |
Zhao L, Bhatia B, Yang S.
|
107 |
Li Q, Zhang Y, Wen Z X.
|
108 |
Berquist Z J, Turaczy K K, Lenert A. Plasmon-enhanced greenhouse selectivity for high-temperature solar thermal energy conversion. ACS Nano, 2020, 14(10): 12605–12613
|
109 |
Li Y, Xu X, Wang X.
|
110 |
Li C J, Li P W, Wang K.
|
111 |
Wang X, Rincon J D, Li P.
|
112 |
Robelin C, Chartrand P, Eriksson G. A density model for multicomponent liquids based on the modified quasichemical model: Application to the NaCl-KCl-MgCl2-CaCl2 system. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2007, 38(6): 869–879
|
113 |
Robelin C, Chartrand P. A density model based on the modified quasichemical model and applied to the NaF-AlF3-CaF2-Al2O3 electrolyte. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2007, 38(6): 881–892
|
114 |
Ouzilleau P, Robelin C, Chartrand P. A density model based on the modified quasichemical model and applied to the (NaCl+KCl+ZnCl2) liquid. Journal of Chemical Thermodynamics, 2012, 47: 171–176
|
115 |
Villada C, Ding W, Bonk A.
|
116 |
Yu Y S, Tao Y B, He Y L. Molecular dynamics simulation of thermophysical properties of NaCl-SiO2 based molten salt composite phase change materials. Applied Thermal Engineering, 2020, 166: 114628
|
117 |
Qiu Y, Li M J, Li M J.
|
118 |
Martinek J, Jape S, Turchi C S. Evaluation of external tubular configurations for a high-temperature chloride molten salt solar receiver operating above 700 °C. Solar Energy, 2021, 222: 115–128
|
119 |
Wang Q, Huang J, Shen Z.
|
120 |
Xu L, Stein W, Kim J S.
|
121 |
Pacio J, Singer C, Wetzel T.
|
122 |
Benoit H, Spreafico L, Gauthier D.
|
123 |
Fritsch A, Frantz C, Uhlig R. Techno-economic analysis of solar thermal power plants using liquid sodium as heat transfer fluid. Solar Energy, 2019, 177: 155–162
|
124 |
Lipiński W, Abbasi-Shavazi E, Chen J.
|
125 |
Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy, 2013, 93: 11–22
|
126 |
Flesch J, Niedermeier K, Fritsch A.
|
127 |
Turchi C S, Libby C, Pye J.
|
128 |
TurchiCGageSMartinekJ,
|
129 |
SNL
|
130 |
KesselringPSelvageC S. The IEA/SSPS solar thermal power plants volume1: Central receiver system. Springer, Berlin, Germany, 1986
|
131 |
CasalF G. Solar thermal power plants: achievements and lessons learned exemplified by the SSPS project in Almeria/Spain. Springer Science & Business Media, 2012
|
132 |
Heinzel A, Hering W, Konys J.
|
133 |
BartosNFisherJWantA. Experiences from using molten sodium metal as heat transfer fluid in concentrating solar thermal power systems. Proceedings of Asia-Pacific Solar Research Conference, Brisbane, Australia, 2015
|
134 |
Coventry J, Andraka C, Pye J.
|
135 |
Deguchi Y, Muranaka R, Kamimoto T.
|
136 |
Armijo K M, Andraka C E. Phenomenological studies on sodium for CSP applications: A safety review. AIP Conference Proceedings, 2016, 1734(1): 040001
|
137 |
Guo Q, Chen Z, Mao L.
|
138 |
BraidTHarperHWilsonR. Operation of cover-gas system during SLSF tests. Argonne National Laboratories Technical Report, 1982
|
139 |
Nur K, Laurent B, Thierry G.
|
140 |
Chikazawa Y, Katoh A, Yamamoto T.
|
141 |
MaletJ. Ignition and combustion of sodium, fire consequences, extinguishment and prevention. In: International Atomic Energy Agency, International Working Group on Fast Reactors, Vienna, Austria, 1996
|
142 |
Sarvghad M, Delkasar Maher S, Collard D.
|
143 |
LaiG Y. High-temperature corrosion and materials applications. In: ASM international, Ohio, US, 2007
|
144 |
Conroy T, Collins M N, Grimes R. A review of steady-state thermal and mechanical modelling on tubular solar receivers. Renewable & Sustainable Energy Reviews, 2020, 119: 109591
|
145 |
Zhang J, Kapernick R. Oxygen chemistry in liquid sodium–potassium systems. Progress in Nuclear Energy, 2009, 51(4−5): 614–623
|
146 |
Mangus D, Napora A, Briggs S.
|
147 |
Hemanath M, Meikandamurthy C, Kumar A A.
|
148 |
Onea A, Hering W, Lux M.
|
149 |
Onea A, Lux M, Hering W.
|
150 |
YvonP. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2016
|
151 |
Hering W, Onea A, Jianu A.
|
152 |
Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation-basics and applications. Solar Energy Materials and Solar Cells, 2021, 222: 110925
|
153 |
Müller-Trefzer F, Niedermeier K, Fellmoser F.
|
154 |
Flesch J, Fritsch A, Cammi G.
|
155 |
Alchagirov B B, Shamparov T M, Mozgovoi A G. Experimental investigation of the density of molten lead–bismuth eutectic. High Temperature, 2003, 41(2): 210–215
|
156 |
Mwesigye A, Yılmaz İ H. Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system. Journal of Molecular Liquids, 2020, 319: 114151
|
157 |
Conroy T, Collins M N, Fisher J.
|
158 |
Flesch J, Marocco L, Fritsch A.
|
159 |
Ho C K. Advances in central receivers for concentrating solar applications. Solar Energy, 2017, 152: 38–56
|
160 |
Zhang J. A review of steel corrosion by liquid lead and lead–bismuth. Corrosion Science, 2009, 51(6): 1207–1227
|
161 |
Ilinčev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb–Bi on structural materials with and without corrosion inhibitors. Nuclear Engineering and Design, 2002, 217(1−2): 167–177
|
162 |
Frazer D, Stergar E, Cionea C.
|
163 |
Lorenzin N, Abanades A. A review on the application of liquid metals as heat transfer fluid in Concentrated Solar Power technologies. International Journal of Hydrogen Energy, 2016, 41(17): 6990–6995
|
164 |
Weisenburger A, Müller G, Heinzel A.
|
165 |
Shi H, Jianu A, Weisenburger A.
|
166 |
Wei X, Jin J, Jiang Z.
|
167 |
Fetzer R, Weisenburger A, Jianu A.
|
168 |
Ban N, Kamihori T, Takamuku H. A study of the behavior of volatiles in the float process. Journal of Non-Crystalline Solids, 2004,
|
169 |
Li L Y, Lin H J, Han J J.
|
170 |
Shou P, Hongcan R, Xin C.
|
171 |
DeAngelis F, Seyf H R, Berman R.
|
172 |
Zhang Y, Cai Y, Hwang S.
|
173 |
Amy C, Budenstein D, Bagepalli M.
|
174 |
FinkJLeibowitzL. Thermodynamic and transport properties of sodium liquid and vapor. Argonne National Laboratories Technical Report, 1995
|
175 |
Sobolev V. Thermophysical properties of lead and lead–bismuth eutectic. Journal of Nuclear Materials, 2007, 362(2–3): 235–247
|
176 |
Assael M J, Kalyva A E, Antoniadis K D.
|
177 |
Humrickhouse P W. An equation of state and compendium of thermophysical properties of liquid tin, a prospective plasma-facing material. IEEE Transactions on Plasma Science, 2019, 47(7): 3374–3379
|
178 |
Chapman T W. The heat capacity of liquid metals. Materials Science and Engineering, 1966, 1(1): 65–69
|
179 |
Savchenko I V, Stankus S V, Agadjanov A S. Measurement of liquid tin heat transfer coefficients within the temperature range of 506–1170 K. High Temperature, 2011, 49(4): 506–511
|
/
〈 | 〉 |