1 Introduction
2 Basic principle of photocatalytic hydrogen generation from water
3 Ferrite photocatalyst
3.1 Basic structure of spinel ferrite
3.2 Application in photocatalytic hydrogen production
Tab.1 Summary of morphology, particle or crystalline size, crystallinity, and specific surface areas with corresponding HER properties |
Materials/keywords | Method | Morphology | Particle size (crystalline size) | Surface area/(m2·g–1) | HER/(mol·g–1·h–1) |
---|---|---|---|---|---|
CoFe2O4 [22]/oxygen defects | Coprecipitation | Nanoparticles | 25(20); | 20.0 | 310.0 |
Mechanical ball milling | Agglomerates | 100–500(5) | 4.0 | 490.0 | |
NiFe2O4 [32]/surface area and size | Hydrothermal and calcination (CTAB) | Nanoparticles | (18.1) | 76.0 | 154.5 |
Hydrothermal and calcination | Agglomerates | (18.1) | smaller | 16.1 | |
NiFe2O4 [33]/crystallinity | ASPM | Mesoporous sphere | 200 High crystallinity | 121.0 | 44.0 |
ASPM | Mesoporous sphere | 200 Low crystallinity | 278.0 | 9.0 | |
MgFe2O4 [23] | Hydrothermal | Cubic | 90 | 53.0 | 81.0 |
CuFe2O4 [26]/size | Sol-gel | Nanoparticles | 80 | – | 1720.0 |
Coprecipitation | Irregular particles | Irregular size | – | 1333.0 | |
Solid state | Aggregate badly | 1000 | – | 1060.0 | |
ZnFe2O4 [27]/morphology | Hydrothermal and calcination | Porous nanorod | Length: 122 Diameter: 29 | 52.0 | 47.0 |
Hydrothermal and calcination | Flaky | – | 51.0 | 17.0 | |
ZnFe2O4 [28]/size | Rapid microwave solid-state | Nanoparticles | (35) | 4.6 | 133.4 |
Solid-state | Agglomerates | (53) | 2.2 | 31.7 | |
ZnFe2O4 CoFe2O4 NiFe2O4 [29] /band structures | Oil-in-water microemulsion reaction | Nanoparticle | 12–20 | 49 | 44.3 |
Same | Nanoparticle | 12–20 | 64 | 16 | |
Same | Nanoparticle | 12–20 | 65 | 16.1 |
4 Ferrite based composite photocatalysts for hydrogen generation
4.1 TiO2/ferrites
4.2 g-C3N4/ferrites
Tab.2 Summary of performances in composites of TiO2/ferrites and CN/ferrites |
Materials | Synthesis methods | Morphology | HER/(mol·g–1·h–1) | Lamp | Ref. |
---|---|---|---|---|---|
TiO2 TiO2/rGO TiO2/CoFe2O4 TiO2/CoFe2O4/rGO | Ultrasound-assisted wet impregnation method (composite) | Non-special | 5336 9421 16673 76559 | UV-Vis | [43] |
TiO2 TiO2/rGO TiO2/CuFe2O4 TiO2/CuFeO4/rGO | Ultrasound-assisted wet impregnation method (composite) | Non-special | 4640 9397 14719 35981 | UV-Vis | [44] |
TiO2 TiO2/NiFe2O4 | Sol-gel/precipitation | Core/shell | 0 mL 18.5 mL | UV | [44] |
Note: In addition to enhanced light absorption and separation of h+/e− pairs, ferrites could also induce the metal and oxygen defect levels in TiO2 to further improve the photocatalytic activity. |
Materials | Synthesis methods | Morphology | HER/(mol·g–1·h–1) | Lamp | Ref. |
---|---|---|---|---|---|
g-C3N4 (CN) CN/Pt CN/MgFe2O4 CN/MgFe2O4/Pt | Sol-gel /calcination | Non-special | 12.5 100.0 3.0 300.9 | Vis >420 nm | [52] |
CN/Pt CN/NiFe2O4/Pt CN/CoFe2O4/Pt | Sol-gel /calcination | Non-special | 53.7 161.1 187.9 | Vis >420 nm | [53] |
CN CN/MnFe2O4 CN/CoFe2O4 CN/NiFe2O4 | Liquid self-assembly | Uniformly nano-ferrites | 0.27 1.07 1.51 1.82 | Vis >420 nm | [54] |
Note: Different type of ferrites would induce different multi-step electron transfers in a composite with g-C3N4 due to different band energy alignments. Especially, the strong oxidation ability of ferrites would accelerate the hydrogen production in the composite of CN/ferrites. |