1 Introduction
2 Forecasting techniques
2.1 Forecasting techniques based on data sets
2.2 Forecasting techniques based on structure, operation, and utilization
2.2.1 Regression models
2.2.2 Markov chain
2.2.3 Numerical weather prediction (NWP)
2.2.4 Empirical model
2.2.5 Artificial neural network
2.2.6 SVM
2.2.7 Deep learning
2.2.8 Hybrid models
Tab.1 Summary of investigated studies |
Ref. | YOP | Region/place | Lat/Long | Time ahead | Training period | Testing period | Input variable | Output variable | Technique | Error parameters | Error/% |
---|---|---|---|---|---|---|---|---|---|---|---|
[76] | 2005 | Turkey | 36°/42° | 4 years, train 9 station | 3 station | Lat, Long, Al, M, MSD, Tm | SR | ANN with SCG, CGP, LM | MAPE, R2 | MAPE<6.78%, R2 = 99.7768% | |
[113] | 2005 | Helwan, Egypt | 1 year | 1 year | RH, T, WS, WD, CC | UV, IR, GI | ANN | RMSE | RMSE: IR= 5.02%, UR= 7.46%, GI= 3.97% | ||
[90] | 2009 | India: Ahmadabad, Nagpur, Mumbai, Vishakhapatnam | 10 stations in India | 10 stations in India | Lat, Long, Al, t, M, T, RH, R, WS, LW | CI | ANN-FFBP | RMSE | RMSE= 4.5% | ||
[32] | 2010 | Dezful, Iran | 32°.16′N 48°.25′ E | 24 h | 1398 d | 214 d | DATm, RH, SD, E WS | DGSR | MLP, RBF | MAPE | MAPE= 5.21% |
[77] | 2011 | Mediterrane, Anatolia, Turkey | 36°.43′ –37°.46′ /30°.17′ –36°.55′ | 1 year | 1 year | Lat, Long, Al, M, CC, Ta, Ha, WSa, SD | SR | ANN | R2, RMSE | RMSE= 0.0358, R2 = 0.9974 | |
[88] | 2012 | Central Queensland, Australia | 23°.38′/150°.58′ | 3 h | 4 m | 1 m | AT, WS, WD, SR, RH, R, VWSP, WS, WD, WG, E, | WE, SE | ANN | R | R = 0.96399 |
[89] | 2012 | Istanbul | - | 3–40 min | 1 m | 1 m | SI, AT,CT | PVo | ANN-LMBP | RMSE,R2 | Stable forecast 3–40 min, Augest, stable 5–35 min forecast, April |
[98] | 2012 | South China | 1 d | Historic | 10 m | Weather+ Historic | Solar PV power | SVM | RMSE, MRE | RMSE= 2.10 MW, MRE= 8.64% | |
[128] | 2012 | China | 24–72 h | 80% of data | 20% of data | 3rd order difference of SI, Tm day, normalized discrete difference, Ta | SR | ANN with statistical parameter selection | RMSE, MAPE, MABE | MAPE= 9.09%–26.7%, RMSE= 42.29–84.65 (W/m2), MABE= 31.10–64.6 (W/m2) | |
[97] | 2013 | US | 1–6 h | 1 year | 1 year | Meteorological variables | Solar power | SVM, RBFNN AR | MAE, MAPE, R2 | SVM>RBFNN>AR | |
[55] | 2013 | Gurgaon, India | 750 d | 165 d | AT, RH, AP, WS, WD, SR | SR | HMM and GFM | RMSE, MAPE | RMSE= 7.9124, MAPE= 3.4255 | ||
[116] | 2013 | NEA, Singapore | 1 h–1 d | 17280 data | 4320 data | T, SKI, SR | SR | Fuzzy and ANN | MAPE | MAPE= 6.03%–9.65% | |
[145] | 2013 | Algeria, Oran | Hourly | 2.6 years | 6 m | Time series | GSR | k-means cluster and NAR | RMSE, nRMSE | RMSE= 60.24 (W/m2), nRMSE= 0.1985 | |
[68] | 2014 | Owabi, Ghana, | 6°.45′ N/1°.43′ W | 11 m | Monthly | T, RH, AP, R, DR, SMP, SHF, WS | GSR | Sunshine and air temperature based empirical model | MBE, MPE, RMSE | Sunshine: MPE= 0.0585%, MBE= -0.0102 (MJ/(m2·d)), RMSE= 0.0338 (MJ/(m2·d)) | |
Air temp: MPE= 1.707%, MBE= –2.973(MJ/(m2·d)), RMSE= 0.985(MJ/(m2·d)) | |||||||||||
[47] | 2015 | 1–3 step ahead | Time series | SR | ARMA, ARIMA with LLF | MAPE | ARMA_MAPE= 71.67%, ARIMA_MAPE= 32.07% | ||||
[49] | 2015 | Spain | 38°.67′ N/4°.15′ W | 1–24 h | 1 year | Monthly | Aggregated hourly SR | DHI and DNI | DHR | rMBE, rRMSE | GHI: rMBE= 0.21, rRMSE= 29.66 |
DNI: rMBE= 3.82, rRMSE= 46.79 | |||||||||||
[62] | 2015 | 1 h to 1 d | 1 year | 1 year | NWP, meteorological | SI | Multi/step linear regression | RMSE, MAE | MOS-MLR>MOSP5 | ||
[86] | 2016 | Florida | 15 m, 1h, 24 h | t, time lag, PM energy MT | PV energy | ANN and SVR | RMSE, MAE, MBE | ANN>SVR | |||
[87] | 2016 | Tehran, Iran | 51°.23′ N/35°.44′ E | 1 year | 1 year | Molde-1: Tmax, Tmin, RH, WS, PM, Model-2: Tmax, Tmin, RH, WS, | GSR | ANN | MAPE, RMSE, R2 | MAPE= 3.13, RMSE= 0.077, R2 = 0.97 | |
[96] | 2016 | Malaga, Spain | 36°.42′ N/4°.28′ W | 4 years | 4 years | AT, RH, AP, GHI | GSR | DT and ANN, DT and SVM, -R, SVM-C and SVM-R, SVM-C and ANN | rMAE, RMSE, S% | rMAE= 15.2%, RMSE= 22.9%, S= 43.9% | |
[99] | 2016 | North East Asia | 60 min | 4 years | Satellite image | SI | AVM+ SVM | RMSE, MRE, R2 | RMSE= 44.1390 (W/m2), MRE= 7.7329%, R2 = 0.9420 | ||
[56] | 2016 | Nakhon Pathom station, Thailand | 13°.81′ N/100°.04′ E | Hourly | 3 years | 1 year | GSR, DSR, Al, CI, ESR | GSR | Markov transition matrix | RMSD | Second order>First order |
[69] | 2016 | Ibadan | 7°.4′ N/3°.5′ E | 9 years | Daily and monthly | daily avg. GSR daily SD, daily avg. Tmax, daily avg.Tmin | Daily and monthly vg. GSR, | Angstrom Prescott model, Garcia model, Hargreaves-Sammani model | RMSE, MAE, MAPE, R2 | Daily avg. GSR RMSE= 2.70 (MJ/(m2·d)), MAE= 1.86(MJ/(m2·d)), MAPE= 9.34%, R2 = 0.68 | |
Monthly avg. GSR RMSE= 0.0909 (MJ/(m2·d)), MAE= 0.0733(MJ/(m2·d)), MAPE= 0.5174%, R2 = 0.9974 | |||||||||||
[119] | 2016 | Gran Canaria Island (Spain) | 28°.75′ /–16° | 1 to 6 h | 1 year | Meteorological data, NWP, Satellite data | GHI | ANN, ANN and SATANN and ECMWF, ANN and ECMWF and NWP | RMSE, % skill | RMSE= 83.58%–147.88%, %S= 9.67%–35.19% | |
[120] | 2016 | Kerman, Iran | 25°.55′–32°/ 30°.29′–57°.06′ | 5 years | 2 years | CI | GHI | SVM and WT | MABE, RMSE, R | MABE= 0.5757 (MJ/m2), RMSE= 0.69 (MJ/m2), R = 0.96 | |
[75] | 2017 | Kuwait: Wafra, Kuwait, International Airport, Abdaly, Rabyah, Sulaibiya | 3 years | 1 year | Time series data | SR | Gradient descent algo, LM algo | MAPE | GDE MAPE= 86.3, LM MAPE= 85.6 | ||
[79] | 2017 | 10 cities, India | Hourly | 90% of 2 years | 10% of 2 years | Tmin, Tmax, Tavg, WS, RH, P, ESR, SD | DGSR | ANN and unity feedback, RBF and LR | MAPE | Average MAPE= 14.84%–16.32% | |
[83] | 2017 | Singapore | 1°.34′ N, 103°.96′ E | 3 m | 1 m | T, DP, WD, WS, WG, irradiance (clear sky), error (BP) | SI | FF-ANN, BP-ANN, Fuzzy preprocessing, Error correction of past 5 min output | MAPE | ANN and Fuzzy and error correction= 29.6%, ANN and Fuzzy= 43.1%, ANN= 46.3% | |
[84] | 2017 | Italy: Lombardy, Calabria, Sicily | 72 h ahead | 2 years | 3 m to 1 year | GHI, CC, T, Azimuth Elevation | Solar power | Analog ensemble and ANN | RMSE | RMSE= 8.09% | |
[85] | 2017 | 9 plants in Taipei, China | 60 min | 4 h with 5 min interval | Past GSI, T, RH,WS, WD | GSI | K-NN and ANN | RMSE, MABE | RMSE= 242 (W/m2), MABE= 42 (W/m2) | ||
[50] | 2017 | 9 cities in Indian | NA | Hourly, Montly | data sets of 7 cities | data set of 2 cities | SD, API, Lat/Long | DGSR` | Linear, quadratic, explinear, expquadratic regression | RMSE, MAPE, r | RMSE= 3.08 (W/m2), MAPE= 0.1342%, R = 0.3790 |
[57] | 2017 | Afyonkarahisarand Antalya, Turkey | Hourly | 75% of 4 years | 25% of 4 years | Time series | GSR | Mycielski-Markov | RMSE, MABE, R2 | RMSE= 13.49(W/m2), MABE= 10.7554%, R2 = 0.8320 | |
[58] | 2017 | Fort Peck, Montana, desert Rock, Navada, Bondville, Illinois Penn State Univ, Pensylvania | 48°.30′ N/105°.10′ W 36°.62′ N/116°.01′ W 40°.05′ N/88°.37′ W 40°.72′ N/77°.93′ W | Seasonal | Historical data | TSRY | Discrete Markov chain | % average error | Max % Error= 10%, Min % Error= 6% | ||
[70] | 2017 | Adrar, Ghardaïa, Tamanrasset, Algeria | 27°.88′/–0.27′ 32°.36′/ 3°.81′ 22°.78′/ 5°.51′ | 3 years | 3 years | SD, AT, RH | DSR | Sunshine based empirical, CI based sunshine and clearness | MPE, RMSE, U95, R, t-statistics | Sunshine and clearness index>All | |
[144] | 2017 | Le-Raizet, France | 16°.26′ N/ 61°.5′ W | 1 h | 1 year | 1 year | Time series | GSR | WD-hybrid, EEMD-hybrid, EMD-hybrid | rRMSE, rMBE, rMAE | rRMSE= 3.80%–8.31%, rMBE= –2.06%–0.02%, rMAE= 2.76%–6.64% |
[28] | 2018 | 12 locations, Iran | 1 d ahead | 70% | 30% | M, atmosphere insolation, AP, AT, Tmax, Tmin, RH, WS, Lat, long | DGSR | GMDH, ANFIS, ANFIS-PSO, ANFIS-GA, ANFIS-ACO | RMSE, MAPE | GMDH>MLFFNN>ANFIS-PSO>ANFIS-GA>ANFIS-ACO>ANFIS | |
[81] | 2018 | Data Euskalmet | Six years | Seasonal | SI, AP, RH, AT | SI | ANN with delays | RMSE | RMSE= 0.03%–1.64, | ||
[41] | 2018 | UMASS Trace Repository | 5 min to 2 days | 2 years | 2 m | T, RH, DP, WS, P | SI | TMLM and GABP and ALHM | MAPE | MAPE= 8.66% | |
[100] | 2018 | Beijing, China | 1 d | 2 years | 1 year | MSD, Tmax, Tmin, PM2.5, PM10, SO2, NO2, CO, O3, AQI | GSR, DSR | SVM | RMSE_DSR, RMSE_GSR | RMSE_DSR= 1.432 MJ/(m2·d), RMSE_GSR= 2.947 MJ/(m2·d) | |
[63] | 2018 | Singapore | 2°/140° | 1 d | 2 years | 1 year | NWP | SI | NWP and PCA | RMSE, rMSE, MAE, rMAE, MBE, rMBE | RMSE= 169 (W·m2), rRMSE= 35.7%, MAE= 193 (W/m2), rMAE= 28.1% MBE= –14 (W/m2), rMBE= 2.9% |
[105] | 2018 | Santiago, Cape Verde | NA | 1 d | 2 years and 10 years | 6 m, 1 year | M, day, t, T, DP, RH, V, WS | GHI | LSTM | RMSE | RMSE= 76.245 (W/m2) |
[107] | 2018 | Global Energy Forecasting Competiton 2014 and ECMRWF | 2 years and 8 d | 1 m and 10 d | Time series, T, CC TCLW, IW, SP, RH, UWC, SSRD, STRD, GHI, P | PV power | k-means and GRU | RMSEavg | RMSEavg = 0.036 | ||
[110] | 2018 | Kalipi, Andhra-Pradesh, India | 13°.99′ / 77°.45′ | 1 year | Day | GHI, DHI, T, P, WS, AP, SD, RH, Surface Temp. | PV power | ANN ANFIS | % Error | ANN>ANFIS | |
[122] | 2018 | Tamanrasset (Algeria), Madina(Saudi Arabia) | 22°.79′/5°.52′ 24°.55′/39°.70′ | 5 min to 3 h ahead | Tamanrassrt 11 years, Madina 1 year | Time series | GHI | WMIM and ELM | MAPE | MAPE= 7.4%–10.77 | |
[127] | 2018 | Ghardaia, Algeria | 32°.6′ /3°.8′ | 10 steps | 1 year | 1.5 year | D, Tmin, Tmax, RH, P, Max. elevation, declination angle, day duration, SD, sunshine ratio | GHR, DHR | WGPR-CFA, WGPR-PFA | RMSE, r2 | RMSEGHR= 3.18 (MJ/m2), r2GHR= 85.85%, RMSEDHR= 5.23 (MJ/m2), r2DHR= 56.21% |
[130] | 2018 | Syracuse | Monthly | 1 year | Monthly | Sun angle, SI, T, visibility, CC, RH | Solar power | EMD and PSO and SVR | nRME MAPE | Avg nRMSE= 0.95%, Avg MAPE= 14.55% | |
[132] | 2018 | Beijing, China | 1 d | 1 year | Seasonal | SR, T, CC, RH, AP, WS, SCADA | Solar PV Power | Wavelet-PSO-SVM | MAPE | MAPE= 4.22% | |
[135] | 2018 | 3 PV site in Australia | 149°.06′E/35°.16′ S | 2 years | CC, CW, IC, SI, P, AT, WS, RH AP | Ramp events | RF with loss functions | NA | NA | ||
[143] | 2018 | Colorado | 39°.74′/105°.1′ | 1 h | 75% of 1 year | 25% of 1 year | GHI, GHIclr, CSI, DNI, DHI, T, RH, AP, WS, WD | GHI | OCCUR and SVM and M3 | nRMSE, nMAE | UC-M3>UC-GBM |
[19] | 2019 | AUTH, Central Macedonia, AMIN, West Macedonia | 40°.37′ N/22°.57′ E 40°.36′ N/ 21°.39′ E | d | 1 year | Daily | Tmax, Tmin, Tavg, Radiation, TD, , RHavg | Rs | Empirical, ANN, MLR | RMSE, R | For AUTH, RMSE= 3.344 MJ/(m2·d), R= 1; For AMIN, RMSE= 3.166 MJ/(m2·d), R= 1 |
[78] | 2019 | Atlanta New York Hawaii | 33°.77′/84°.98′ 43°.13′/75°.90′ 19°.33′/155°.58′ | 1 h to 1d | 3 year | 1 year | GHI, CSK, GHI, CC, DP, PW, RH, SZA, WS, WD, T | GHI | LSTM | RMSE, MAE, R2 | RMSE= 41.37–66.69 (W/m2), MAE= 30.19–46.04 (W/m2), R2 = 0.95–0.97 |
[80] | 2019 | Algiers | 36°.8′ N/3°.170′ E | 5 min | 2 years | Monthly | T, RH, WS,WD, P, SD, AP, SZA, ESI | GHI, DNI | ANN | RMSE, nRME, MAE, nMAE | RMSE= 126.65–157.2 (Wh/m2), nRMSE= 28.08%–34.85%, MAE= 112.60–118.59 (Wh/m2), nMAE= 24.96%–26.28% |
[44] | 2019 | Reese Research Center, Lubbock, TX | 1 year | 30 days | Time series | Daily solar energy | ARIMA | MAPE | MAPE= 17.70% | ||
[45] | 2019 | Seoul, South Korea | 37°.34′ N/126°.5′ E | Monthly and daily | 3 years | Time series | Daily and monthly SR | SARIMA | RMSE and R2 | Daily: RMSE= 104.26, R2 = 68%; Monthly: RMSE= 33.18, R2 = 79% | |
[46] | 2019 | Jamia Millia Islamia, New Delhi | 28°.56′ N/77°.28′ E | Monthly | 34 years | Monthly | Time series | SR | SARIMA | MPE | MPE= 1.402 |
[48] | 2019 | Mauritius | 20°.3′ S/57°.6′ E | Monthly | 29 years | 10 years | SD, T, ER, RH | GSR | Sayigh Universal formula | MAPE, RMSE | MAPE= 5.07%–7.49%, RMSE= 0.96–1.57 MJ/(m2·d) |
[101] | 2019 | 6 sites in China | Daily | 70% of 3 years | 30% of 3 years | Tm, Tmax, Tmin, AP, RH, SD, N WS, AQI | DGSR | SVR | RMSE | RMSE= 0.00036–0.1910 MJ/m2 | |
[54] | 2019 | Naresuan University, Thailand | 1 h | 6 m | GSR, AT, WS | PV power | HMM, GA-HMM | MAPE, nRME | nRMSE= 2.33%, MAPE= 6.27% | ||
[64] | 2019 | Netherland | Hourly | 2 year | Seasonal | T, RH, SR, CC, R, aerosols, CSK, CI, lat, long, VIAE, VIO | Deterministic and Proba-bilistic forecast | Parametric regression, Quantile regression, Quantile regression, RF, GBDT | RMSE, RMSE_SS, CRPSS | ||
[67] | 2019 | Amravati, Maharashtra | 20°.93′/77°.77′ | 5 years | DGSR, ESR, SD, SDmax monthly average DSI, T, RH | GSR, DSR | Empirical model | MAPE, RMSE, R2 | GSR: MAPE= 2.50%, RMSE= 0.58 (MJ/m2), R2 = 0.98; MDR: MAPE= 13.506%, RMSE= 1.11 (MJ/m2), R2 = 0.94 | ||
[108] | 2019 | Nanao, Japan | NA | 90% of 8735 data points | 10% of 8735 data points | GHI, T, WS, WD, Ep, Ei | Solar PV power | GRU | nRMSE | nRMSE= 9.64% | |
[111] | 2019 | University of Queensland, Australia | 1 d | 1 year | Seasonal | PV power, SI, WS, T | PV power | WT and PSO and NNE | Error-variance | Seasonal variations, 0.1723–0.3103 | |
[125] | 2019 | Kunming, China; Denver, USA | 24°.51′/102°.51′ 39°.44′/105°.1′ | Monthly | 2 years | 1 year | Time series | GHI | WT and ENN | RMSE, nRME, FS | RMSE= 25.83 (W/m2), nRMSE= 14.17%, FS= 0.7590 |
[126] | 2019 | NSRDB | W97°/N33°W107°/N143° | 3 h ahead | 1 year | Monthly | GHI, SZA, T, DP, RH, PWWD, WS, | GHI | ConvGRU-VB | RMSE, MEA, NSE | RMSE= 69.5, MEA= 34.8, NSE= 0.929 |
[112] | 2019 | Odeillo, France | 42°.29′ /2°.01′ | 1 to 6 h ahead | 80% of 3 years | 20% of 3 year | SR time series | GHI, BNI, DHI | SP, ANN, RF | nRME, RMSE, MAE, nMAE | nRMSE_GHI= 19.65%–27.78%, nRMSE_BNI= 34.11%–49.08%, nRMSE_DHI= 35.08%–49.14% |
[114] | 2019 | Favignana Island, Italy | 37°.55′/12°.19′ | Monthly | 1 year | Seasonal | WS and solar data | Wind power, solar power | GMDHNNFOA | MAPE, AME, RMSE, R2 | MAPE= 1.770%, MAE= 0.015, RMSE= –0.017868 |
[117] | 2019 | 5 cites in China | 1 h to 24 h | 1 year | Monthly | Time series | DSR | DFT-PCA-Elman | RMSE, MAE | RMSE= 72.95–191.33, MAE= 39.46–118.67 | |
[118] | 2019 | Toledo, Spain | 39°.53′ N/4°.02′ N | Hourly | 80% of each month | 20% of each month | Reflectivity, CSK, CI | GSR | ELM | RMSE | RMSE= 60.60 W/m2 |
[129] | 2019 | GEFcom2014 | 1 to 3 step ahead | 3 m | 10% of data | t, RH, SP, CC, WS, P, T, R, SR | PV power | PCA and k-means and HGWO and RF | RMSE, MAE | RMSE= 8.88%–9.82%, MAE= 4.76%–5.80% | |
[134] | 2019 | 8 sites in Xinjiang Uygur Autonomous Region, China | 1 h | 1 year | 1 year | SZA, P, T, WD, WS, RH, AP | GSR | RS and SRSCAD and FF | MAPE, RMSE, TIC, CC, R2 | MAPE= 0.066, RMSE= 20.21 W/m2, TIC= 0.06, CC= 3.40 s, R2 = 0.98 | |
[137] | 2019 | IIT Gandhinagar | 20 to 60 min | 1 year | Time series | SR | SARIMA-RVFL | ∆MAPE, ∆R2, ∆ RMSE, ∆MASE | MAPE= 6.376, RMSE= 3.497, MASE= 6.452, R2 = –0.649 | ||
[139] | 2019 | Shaoxing, China | 120°.23′ E/29°.72′ N | 7.5 min to 60 min | 3 years | 2 years | PV power, T | PV power output | ALSTM | RMSE, MAPE, MAE | ALSTM>PM>ARIMAX>LSTM>MLP> |
[140] | 2019 | MMMUT, Gorakhpur, India | 26°.43′/83°.26′ | 1 d to 6 d | Monthly | Daily | Tmin, Tmax, Tavg, WS,R, DP, GSR, AP, SZ | Solar PV output | MARS, CART, M5, RF | MBE, RMSE, MAE | RF>M5>MARS>CART |
[141] | 2019 | Galicia, Spain | Monthly | 70% of data | 30% of 1 year data | Flow, SR, Lower and upper panel T | Solar energy | ML with BR, SCG, RB, GDX, LM algo | NMSE | RBFN, MLP>MLR, MN-LR | |
[131] | 2019 | Salto, Uruguay | 31°.28′/57°.92′ | 1 to 10 min | Sky images | GHI | Cloud detection and motion estimation | FS | FS= 11.4% | ||
[133] | 2019 | Victoria, Australia | Hourly | 80% of 278 days | 20% of 278 d | PV power, SI, AT | PV power | GASVM | RMSE, MAPE | RMSE= 11.226 W, MAPE= 1.7052% | |
[142] | 2019 | Australia | Daily | 5 years | Daily, weekly, monthly | WS, T, RH, GHI, DHI, WD | PV output | Ensemble with recursive arithmetic average | RMSE, MAPE, MAE | Ensemble>SVM>MLR>MARS | |
[146] | 2019 | Australia | 1 d | 60743 data points | 23 to 5077 data points | Time series | GSR | CNN and LSTM | rRMSE, MAPE, APE | rRMSE= 1.515%, MAPE= 4.672%, APE= 1.233% | |
[147] | 2019 | 90 stations in China | Hourly | 1 year | Hourly, daily, monthly | MTSAT images, long, lat, Al | GSR | CNN and MLP | RMSE | RMSEhourly = 0.30 MJ/m2, RMSEdaily = 1.92 MJ/m2, RMSEmonthly = 1.08 MJ/m2 | |
[148] | 2019 | Shagaya, Kuwait Cocoa, USA | 255 to 330 data points | 32 to 38 data points | GHI, GTI, WS, WD, AT, RH, P, CT | Solar power | Theta and MLSHM | nMAE, nMSE | nMAE= 0.0317–0.0877, nMSE= 0.00197–0.0168 | ||
[106] | 2020 | Barmer, Jaisalmer, Bikaner, Jodhpur | 25°.75′ N/71°.38′ E 26°.90′ N/70°.90′ E 28°.02′ N/73°.31′ E 26°.23′ N/73°.02′ E | 3/6/24 h | 70% of 5 years | 30% of 5 years | DHI, DNI, DP, WD, RH, T | GSR | LSTM | MAPE, RMSE | MAPE= 6.69%–10.47%, RMSE= 0.099–0.181 |
[121] | 2020 | American Meteorological Society 2013–2014 | 10 years | 2 years | P, DLWF, DSWF, AP,P, RH, total column-integrated condensate ULWRs, CC | Solar irradiation | GA/PSO and CNN | MSE, MAE, RS, AER | MSE= 4.268·1012, MAE= 1.5153 (MJ/m2), RS= 70.89%, AER= 0.14208 | ||
[136] | 2020 | Oak Ridge National Laboratory | 1 to 50min | 1 year | past PV power Past PV+ CC | Solar radiation, PV power | Uncertainty bias and Kalman filter | nRMSE MAPE | nRME= 7.43%–26.13% MAPE= 5.72%–25.75% | ||
[138] | 2020 | Wuhan, Beijing, Lhasa, and Urumqi, China | 30°.37′/114°.08′ 39°.48′/116°.28′ 29°.40′/91°.08′ 43°.47′/87°.39′ | 10 years | 10 years | CI, sunshine ratio, Tavg, RHavg | SR | SVM, CNQR, Empirical model | RMSE, R2, MABE, MBE | SVM>CNQR>Empirical model |
Notes: Al—Altitude; AP—Atmospheric pressure; AT—Ambient temperature; CC—Cloud cover; CT—Cell temperature; CSK—Clear sky radiation; CW—Cloud water; DATm—Daily mean air temperature; DGSR —Daily global solar radiation; DLWF—Downward long-wave irradiative flux average; DP—Dew point; DR—Down welling radiation; DSWF—Downward short-wave irradiative flux average; E—Evaporation; Ei = Inverter energy; Ep—Plant energy; GI—Global isolation; GTI—Global tilt irradiance; Ha = Average humidity; IC= Ice contents; Lat—Latitude; Long—Longitude; LW—Long wavelength; M—Month number; MSD—Mean sunshine duration; MT—Meteorological data; MTSAT—Geostationary satellite; N—No. of day; P—Precipitation; PM—Particulate matter; PVo—PV output; R—Rainfall; RH—Relative humidity; Rs— Radiation; SE—Solar energy; SHF—Soil heat flux; SI—Solar irradiance; SKI—Sky information; SMP—Soil matrix potential; SP—Surface pressure; SR—Solar radiation; SSRD—Surface solar radiation down; STRD —Surface thermal radiation down; t—time; SZA—Solar zenith angle; T—Temperature; Ta—Average temperature; Tm—Mean temperature; Tmax—Maximum temperature; Tmin—Minimum temperature; TCLW—Total Coloumn liquid water; ULWRs—Upward long-wave radiation at the surface; VIAE—Vertically integrated Angstrom exponent; VIO—Vertically integrated ozone; WC—Wind components; WD—Wind direction; WE—Wind energy; WG—Wind gust; WS—Wind speed; WSa—Average wind speed |