RESEARCH ARTICLE

Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction reaction

  • Lin LI 1 ,
  • Cehuang FU 1 ,
  • Shuiyun SHEN 1 ,
  • Fangling JIANG 1 ,
  • Guanghua WEI 2 ,
  • Junliang ZHANG , 1
Expand
  • 1. Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. SJTU-ParisTech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 29 Oct 2019

Accepted date: 05 Feb 2020

Published date: 15 Oct 2022

Copyright

2020 Higher Education Press

Abstract

The development of highly active nitrogen-doped carbon-based transition metal (M-N-C) compounds for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) greatly helps reduce fuel cell cost, thus rapidly promoting their commercial applications. Among different M-N-C electrocatalysts, the series of Fe-N-C materials are highly favored because of their high ORR activity. However, there remains a debate on the effect of Fe, and rare investigations focus on the influence of Fe addition in the second heat treatment usually performed after acid leaching in the catalyst synthesis. It is thus very critical to explore the influences of Fe on the ORR electrocatalytic activity, which will, in turn, guide the design of Fe-N-C materials with enhanced performance. Herein, a series of Fe-N-C electrocatalysts are synthesize and the influence of Fe on the ORR activity are speculated both experimentally and theoretically. It is deduced that the active site lies in the structure of Fe-N4, accompanied with the addition of appropriate Fe, and the number of active sites increases without the occurrence of agglomeration particles. Moreover, it is speculated that Fe plays an important role in stabilizing N as well as constituting active sites in the second pyrolyzing process.

Cite this article

Lin LI , Cehuang FU , Shuiyun SHEN , Fangling JIANG , Guanghua WEI , Junliang ZHANG . Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction reaction[J]. Frontiers in Energy, 2022 , 16(5) : 812 -821 . DOI: 10.1007/s11708-020-0669-0

Acknowledgment

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21533005 and 21802095) and the National Key R&D Program of China (2016YFB0101201).

Electronic Supplementary Material

ƒSupplementary material is available in the online version of this article at https://doi.org/10.1007/s11708-020-0669-0 and is accessible for authorized users.
1
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

DOI

2
Zhang J, Sasaki K, Sutter E, Adzic R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222

DOI

3
Luo L, Zhu F, Tian R, Li L, Shen S, Yan X, Zhang J. Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catalysis, 2017, 7(8): 5420–5430

DOI

4
Cai B, Hübner R, Sasaki K, Zhang Y, Su D, Ziegler C, Vukmirovic M B, Rellinghaus B, Adzic R R, Eychmüller A. Core-shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angewandte Chemie International Edition, 2018, 57(11): 2963–2966

DOI

5
Guo Y, Tang J, Henzie J, Jiang B, Qian H, Wang Z, Tan H, Bando Y, Yamauchi Y. Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Materials Horizons, 2017, 4(6): 1171–1177

DOI

6
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324(5923): 71–74

DOI

7
Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. Journal of the American Chemical Society, 2017, 139(48): 17281–17284

DOI

8
Papageorgopoulos D. Fuel cells R&D overview. 2018, available at the website of hydrogen.energy.gov

9
Vesborg P C, Jaramillo T F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Advances, 2012, 2(21): 7933–7947

DOI

10
Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. Journal of the American Chemical Society, 2017, 139(40): 14143–14149

DOI

11
Lee J S, Park G S, Kim S T, Liu M, Cho J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C–functionalized melamine foam. Angewandte Chemie International Edition, 2013, 125(3): 1060–1064

DOI

12
Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679

DOI

13
Xu H, Li Y, Wang R. Pore-rich iron-nitrogen-doped carbon nanofoam as an efficient catalyst towards the oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44(48): 26285–26295

DOI

14
Li W, Wu J, Higgins D C, Choi J Y, Chen Z. Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction. ACS Catalysis, 2012, 2(12): 2761–2768

DOI

15
Jiang W, Gu L, Li L, Zhang Y, Zhang X, Zhang L, Wang J, Hu J, Wei Z, Wan L. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578

DOI

16
Kattel S, Wang G. Reaction pathway for oxygen reduction on FeN4 embedded graphene. Journal of Physical Chemistry Letters, 2014, 5(3): 452–456

DOI

17
Matter P H, Wang E, Millet J M M, Ozkan U S. Characterization of the iron phase in CNx-based oxygen reduction reaction catalysts. Journal of Physical Chemistry C, 2007, 111(3): 1444–1450

DOI

18
Nallathambi V, Lee J W, Kumaraguru S P, Wu G, Popov B N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. Journal of Power Sources, 2008, 183(1): 34–42

DOI

19
Matter P H, Wang E, Arias M, Biddinger E J, Ozkan U S. Oxygen reduction reaction catalysts prepared from acetonitrile pyrolysis over alumina-supported metal particles. Journal of Physical Chemistry B, 2006, 110(37): 18374–18384

DOI

20
Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96

DOI

21
Hofmann S, Blume R, Wirth C T, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J. State of transition metal catalysts during carbon nanotube growth. Journal of Physical Chemistry C, 2009, 113(5): 1648–1656

DOI

22
Liu G, Li X, Ganesan P, Popov B N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta, 2010, 55(8): 2853–2858

DOI

23
Liu G, Li X, Ganesan P, Popov B N. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Applied Catalysis B: Environmental, 2009, 93(1–2): 156–165

DOI

24
Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942

DOI

25
Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351(6271): 361–365

DOI

26
Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323(5915): 760–764

DOI

27
Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. Journal of Physical Chemistry C, 2009, 113(32): 14302–14310

DOI

28
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

DOI

29
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

DOI

30
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799

DOI

31
Cramer C J. Essentials of Computational Chemistry: Theories and Models. Wiley, 2004

32
Liu Q, Liu X, Zheng L, Shui J. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angewandte Chemie International Edition, 2018, 57(5): 1204–1208

DOI

33
Wu M, Tang Q, Dong F, Bai Z, Zhang L, Qiao J. Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. Journal of Catalysis, 2017, 352: 208–217

DOI

34
Xia W, Tang J, Li J, Zhang S, Wu K, He J, Yamauchi Y. Defect-rich graphene nanomech produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angewandte Chemie International Edition, 2019, 58(38): 13354–13359

DOI

35
Jiang Y, Yang L, Wang X, Wu Q, Ma J, Hu Z. Doping sp2 carbon to boost the activity for oxygen reduction in an acidic medium: a theoretical exploration. RSC Advances, 2016, 6(54): 48498–48503

DOI

36
Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts. Advances in Catalysis, 2000, 45: 71–129

DOI

37
Tan H, Li Y, Kim J, Takei T, Wang Z, Xu X, Wang J, Bando Y, Kang Y, Tang J, Yamauchi Y. Sub-50 nm iron-nitrogen-doped hollow carbon sphere encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Advancement of Science, 2018, 5(7): 1800120

DOI

38
Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angewandte Chemie International Edition, 2017, 56(2): 610–614

DOI

39
Tan H, Tang J, Henzie J, Li Y, Xu X, Chen T, Wang Z, Wang J, Ide Y, Bando Y, Yamauchi Y. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano, 2018, 12(6): 5674–5683

DOI

Outlines

/