RESEARCH ARTICLE

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol

  • Cheng PAN 1 ,
  • Chao FAN 1 ,
  • Wanqin WANG 2 ,
  • Teng LONG 3 ,
  • Benhua HUANG 1 ,
  • Donghua ZHANG , 4 ,
  • Peigen SU 1 ,
  • Aqun ZHENG 1 ,
  • Yang SUN , 1
Expand
  • 1. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • 2. Department of Material Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • 3. School of Material Science and Engineering, Xi’an University of Science and Technology, Xi’an 710600, China
  • 4. School of Materials & Chemical Engineering, Xi’an Technological University, Xi’an 710021, China

Received date: 07 Jun 2019

Accepted date: 02 Dec 2019

Published date: 15 Oct 2022

Copyright

2020 Higher Education Press

Abstract

Most known catalytic dehydration of sugar alcohols such as D-sorbitol and D-mannitol can only produce di-dehydrated forms as major product, but mono-dehydrated products are also useful chemicals. Moreover, both di- and mono-dehydration demand a high temperature (150°C or higher), which deserves further attentions. To improve the mono-dehydration efficiency, a series of metal-containing hydrothermal carbonaceous materials (HTC) are prepared as catalyst in this work. Characterization reveals that the composition of preparative solution has a key influence on the morphology of HTC. In transformation of D-sorbitol, all HTC catalysts show low conversions in water regardless of temperature, but much better outputs are obtained in ethanol, especially at a higher temperature. When D-mannitol is selected as substrate, moderate to high conversions are obtained in both water and ethanol. On the other hand, high mono-dehydration selectivity is obtained for both sugar alcohols by using all catalysts. The origin of mono-dehydration selectivity and role of carbon component in catalysis are discussed in association with calculations. This study provides an efficient, mild, eco-friendly, and cost-effective system for mono-dehydration of sugar alcohols, which means a lot to development in new detergents or other fine chemicals.

Cite this article

Cheng PAN , Chao FAN , Wanqin WANG , Teng LONG , Benhua HUANG , Donghua ZHANG , Peigen SU , Aqun ZHENG , Yang SUN . Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol[J]. Frontiers in Energy, 2022 , 16(5) : 822 -839 . DOI: 10.1007/s11708-020-0677-0

Acknowledgments

This study is supported by the Fundamental Research Funds for the Central Universities (No. xjj2014005).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11708-020-0677-0 and is accessible for authorized users.
1
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 91: 49672–49722

DOI

2
Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, (9): 1493–1513

DOI

3
Zhang J, Li J, Wu S B, Liu Y. Advances in the catalytic production and utilization of sorbitol. Industrial & Engineering Chemistry Research, 2013, 2(34): 11799–11815

DOI

4
Zhang H, Rindt C C M, Smeulders D M J, Nedea S V. Nanoscale heat transfer in carbon nanotubes–sugar alcohol composite as heat storage materials. The Journal of Physical Chemistry C, 2016, 0(38): 21915–21924

DOI

5
Zhang M, Lai W, Su L, Wu G. Effect of catalyst on the molecular structure and thermal properties of isosorbide polycarbonates. Industrial & Engineering Chemistry Research, 2018, 7(14): 4824–4831

DOI

6
Ćirin D M, Poša M M, Krstonošić V S. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Industrial & Engineering Chemistry Research, 2012, 1(9): 3670–3676

DOI

7
Baggett N, Mosihuzzaman M, Webber J M. Synthesis of some monoacetals of 1,4-anhydro-D-mannitol. Carbohydrate Research, 1983, 116(1): 49–60

DOI

8
Flèche G, Huchette M. Isosorbide. Preparation, properties and chemistry. Starch, 1986, 38(1): 26–30

DOI

9
Rusu O A, Hoelderich W F, Wyart H, Ibert M. Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Applied Catalysis B: Environmental, 2015, 176–177: 139–149

DOI

10
Tang Z C, Yu D H, Sun P, Li H, Huang H. Phosphoric acid modified Nb2O5: a selective and reusable catalyst for dehydration of sorbitol to isosorbide. Bulletin of the Korean Chemical Society, 2010, 31(12): 3679–3683

DOI

11
Kobayashi H, Yokoyama H, Feng B, Fukuoka A. Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green Chemistry, 2015, 17(5): 2732–2735

DOI

12
Cubo A, Iglesias J, Morales G, Melero J A, Moreno J, Sánchez-Vázquez R. Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: influence of catalyst hydrophobization. Applied Catalysis A: General, 2017, 531: 151–160

DOI

13
Zhang J, Wang L, Liu F, Meng X, Mao J, Xiao F S. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catalysis Today, 2015, 242: 249–254

DOI

14
Robinson J M, Wadle A M, Reno M D, Kidd R, Barrett Hinsz S R, Urquieta J. Solvent- and microwave-assisted dehydrations of polyols to anhydro and dianhydro polyols. Energy & Fuels, 2015, 29(10): 6529–6535

DOI

15
Yamaguchi A, Hiyoshi N, Sato O, Shirai M. Sorbitol dehydration in high temperature liquid water. Green Chemistry, 2011, 13(4): 873–881

DOI

16
Yokoyama H, Kobayashi H, Hasegawa J, Fukuoka A. Selective dehydration of mannitol to isomannide over Hβ zeolite. ACS Catalysis, 2017, 7(7): 4828–4834

DOI

17
Okuhara T. Water-tolerant solid acid catalysts. Chemical Reviews, 2002, 102(10): 3641–3666

DOI

18
Dabbawala A A, Mishra D K, Huber G W, Hwang J S. Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Applied Catalysis A: General, 2015, 492: 252–261

DOI

19
Polaert I, Felix M C, Fornasero M, Marcotte S, Buvat J C, Estel L. A greener process for isosorbide production: kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chemical Engineering Journal, 2013, 222: 228–239

DOI

20
Clancy A J, Bayazit M K, Hodge S A, Skipper N T, Howard C A, Shaffer M S P. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chemical Reviews, 2018, 118(16): 7363–7408

DOI

21
Lee J S, Kim S I, Yoon J C, Jang J H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano, 2013, 7(7): 6047–6055

DOI

22
Moothi K, Simate G S, Falcon R, Iyuke S E, Meyyappan M. Carbon nanotube synthesis using coal pyrolysis. Langmuir, 2015, 31(34): 9464–9472

DOI

23
Zhu L, Zhao X, Li Y, Yu X, Li C, Zhang Q. High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Materials Chemistry and Physics, 2013, 137(3): 984–990

DOI

24
Ulstrup S, Lacovig P, Orlando F, Lizzit D, Bignardi L, Dalmiglio M, Bianchi M, Mazzola F, Baraldi A, Larciprete R, Hofmann P, Lizzit S. Photoemission investigation of oxygen intercalated epitaxial graphene on Ru(0001). Surface Science, 2018, 678: 57–64

DOI

25
Li S, Jia Z, Li Z, Li Y, Zhu R. Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Advanced Powder Technology, 2016, 27(2): 591–598

DOI

26
Salimi M, Balou S, Kohansal K, Babaei K, Tavasoli A, Andache M. Optimizing the preparation of meso- and microporous canola stalk-derived hydrothermal carbon via response surface methodology for methylene blue removal. Energy & Fuels, 2017, 31(11): 12327–12338

DOI

27
Zhao R, Wang Y, Li X, Sun B, Li Y, Ji H, Qiu J, Wang C. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2584–2592

DOI

28
Qin Y, Zhang L, An T. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III). ACS Applied Materials & Interfaces, 2017, 9(20): 17115–17124

DOI

29
Zhang P, Song X, Yu C, Gui J, Qiu J. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7481–7485

DOI

30
Bhattacharjee R, Datta A. Role of carbon support for subnanometer gold-cluster-catalyzed disiloxane synthesis from hydrosilane and water. The Journal of Physical Chemistry C, 2017, 121(37): 20101–20112

DOI

31
Johari P, Shenoy V B. Modulating optical properties of graphene oxide: role of prominent functional group. ACS Nano, 2011, 5(9): 7640–7647

DOI

32
Ahmadi M, Mistry H, Roldan Cuenya B. Tailoring the catalytic properties of metal nanoparticles via support interactions. The Journal of Physical Chemistry Letters, 2016, 7(17): 3519–3533

DOI

33
Luo Z, Lu Y, Somers L A, Johnson A T C. High yield preparation of macroscopic graphene oxide membranes. Journal of the American Chemical Society, 2009, 131(3): 898–899

DOI

34
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachary K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Amado C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09W Revision D.01. Wallingford, CT: Gaussian, Inc., 2013

35
van Alem K, Sudhölter E J R, Zuilhof H. Quantum chemical calculations on α-substituted ethyl cations: a comparison between B3LYP and Post-HT method. The Journal of Physical Chemistry A, 1998, 102(52): 10860–10868

DOI

36
Zhao Z P, Li M S, Zhang J Y, Li H N, Zhu P P, Liu W F. New chiral catalytic membranes created by coupling UV-photografting with covalent immobilization of salen-Co(III) for hydrolytic kinetic resolution of racemic epichlorohydrin. Industrial & Engineering Chemistry Research, 2012, 51(28): 9531–9539

DOI

37
Chen H R, Shi J L, Zhang W H, Ruan M L, Yan D S. Incorporation of titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chemistry of Materials, 2001, 13(3): 1035–1040

DOI

38
Ebina T, Iwasaki T, Chatterjee A, Katagiri M, Stucky G D. Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral octahedral sheets of phyllosilicates. The Journal of Physical Chemistry B, 1997, 101(7): 1125–1129

DOI

39
Jirka I. Initial and final state effects in the photoelectron and auger spectra of Si and Al bonded in zeolites. The Journal of Physical Chemistry B, 1997, 101(41): 8133–8140

DOI

40
Galindo I R, Viveros T, Chadwick D. Synthesis and characterization of titania-based ternary and binary mixed oxides prepared by the sol-gel method and their activity in 2-propanol dehydration. Industrial & Engineering Chemistry Research, 2007, 46(4): 1138–1147

DOI

41
Hiyoshi N. Nanocrystalline sodalite: preparation and application to epoxidation of 2-cyclohexen-1-one with hydrogen peroxide. Applied Catalysis A: General, 2012, 419–420: 164–169

DOI

42
Zhan H, Yang X, Wang C, Chen J, Wen Y, Liang C, Greer H F, Wu M, Zhou W. Multiple nucleation and crystal growth of barium titanate. Crystal Growth & Design, 2012, 12(3): 1247–1253

DOI

43
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquérol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

DOI

44
Zhang H, Wang Y M, Zhang L, Gerritsen G, Abbenhuis H C L, van Santen R A, Li C. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports. Journal of Catalysis, 2008, 256(2): 226–236

DOI

45
Lee K H, Kim K W, Pesapane A, Kim H Y, Rabolt J F. Polarized FT-IR study of macroscopically oriented electrospun Nylon-6 nanofibers. Macromolecules, 2008, 41(4): 1494–1498

DOI

46
Pan C, Huang B, Li X, Zhu H, Zhang D, Zheng A, Li Y, Sun Y. Synthesis and catalytic property of fibrous titanium-containing graphite oxide. Catalysis Surveys from Asia, 2017, 21(4): 160–174

DOI

47
Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Macías-García A, Gómez-Serrano V. Preparation of activated carbon-SnO2, TiO2, and WO3 catalysts. Study by FT-IR spectroscopy. Industrial & Engineering Chemistry Research, 2016, 55(18): 5200–5206

DOI

48
Eryürek M, Haman Bayarı S, Yüksel D, Hanhan M E. Density functional investigation of the molecular structures, vibrational spectra and molecular properties of sulfonated pyridyl imine ligands and their palladium complexes. Computational and Theoretical Chemistry, 2013, 1013: 109–115

DOI

Outlines

/