Numerical simulation of underground seasonal cold energy storage for a 10 MW solar thermal power plant in north-western China using TRNSYS
Received date: 22 Oct 2019
Accepted date: 14 Mar 2020
Published date: 15 Jun 2021
Copyright
This paper aims to explore an efficient, cost-effective, and water-saving seasonal cold energy storage technique based on borehole heat exchangers to cool the condenser water in a 10 MW solar thermal power plant. The proposed seasonal cooling mechanism is designed for the areas under typical weather conditions to utilize the low ambient temperature during the winter season and to store cold energy. The main objective of this paper is to utilize the storage unit in the peak summer months to cool the condenser water and to replace the dry cooling system. Using the simulation platform transient system simulation program (TRNSYS), the borehole thermal energy storage (BTES) system model has been developed and the dynamic capacity of the system in the charging and discharging mode of cold energy for one-year operation is studied. The typical meteorological year (TMY) data of Dunhuang, Gansu province, in north-western China, is utilized to determine the lowest ambient temperature and operation time of the system to store cold energy. The proposed seasonal cooling system is capable of enhancing the efficiency of a solar thermal power plant up to 1.54% and 2.74% in comparison with the water-cooled condenser system and air-cooled condenser system respectively. The techno-economic assessment of the proposed technique also supports its integration with the condenser unit in the solar thermal power plant. This technique has also a great potential to save the water in desert areas.
Zulkarnain ABBAS , Yong LI , Ruzhu WANG . Numerical simulation of underground seasonal cold energy storage for a 10 MW solar thermal power plant in north-western China using TRNSYS[J]. Frontiers in Energy, 2021 , 15(2) : 328 -344 . DOI: 10.1007/s11708-020-0676-1
1 |
Berroug F, Lakhal E K, El Omari M, Faraji M, El Qarniac H. Thermal performance of a greenhouse with a phase change material north wall. Energy and Building, 2011, 43(11): 3027–3035
|
2 |
Najjar A, Hasan A. Modeling of greenhouse with PCM energy storage. Energy Conversion and Management, 2008, 49(11): 3338–3342
|
3 |
Bouadila S, Kooli S, Skouri S, Lazaar M, Farhat A. Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy, 2014, 64: 663–672
|
4 |
Sarbu I, Sebarchievici C. Solar Heating and Cooling: Fundamentals, Experiments and Applications. Oxford: Elsevier, 2016
|
5 |
Schmidt D, Mangold D, Mülller-Steinhagen H. Central solar heating plants with seasonal storage in Germany. Solar Energy, 2004, 76(1–3): 165–174
|
6 |
Kuravi S, Trahan J, Goswami D Y, Rahman M M,Stefanakos E K.. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013, 39(4): 285–319
|
7 |
Liu M, Steven Tay N H, Bell S, Belusko M, Jacob R, Will G, Saman W, Bruno F. Review on concentrating solar power plants and newdevelopments in high-temperature thermal energy storage technologies. Renewable & Sustainable Energy Reviews, 2016, 53: 1411–1432
|
8 |
Xu X, Luo F, Wang W, Hong T, Fu X. Performance-based evaluation of courtyard design in China’s cold-winter hot-summer climate regions. Sustainability, 2018, 10(11): 3950
|
9 |
Moore J, Grimes R, O’Donovan A, Walsh E. Design and testing of a novel air-cooled condenser for concentrated solar power plants. Energy Procedia, 2014, 49: 1439–1449
|
10 |
de Gracia A, Cabeza L F. Phase change materials and thermal energy storage for buildings. Energy and Building, 2015, 103: 414–419
|
11 |
Kumar A, Shukla S K. A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia, 2015, 74: 462–469
|
12 |
Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability, 2018, 10(2): 191
|
13 |
International Renewable Energy Agency (IRENA). The Energy Technology Systems Analysis Programmes (ETSAP): Technology Brief E17. Paris, France, 2013
|
14 |
Cruickshank C A, Baldwin C. Sensible thermal energy storage: diurnal and seasonal. In: Letcher T M, ed. Storing Energy, 2016: 291–311
|
15 |
Lundh M, Dalenback J O. Swedish solar heated residential area with seasonal storage in rock: initial evaluation. Renewable Energy, 2008, 33(4): 703–711
|
16 |
Sibbitt B, McClenahan D, Djebbar R, Thornton J, Wong B, Carriere J, Kokko J. The performance of a high solar fraction seasonal storage district heating system–five years of operation. Energy Procedia, 2012, 30: 856–865
|
17 |
Wu W, You T, Wang B, Shi W, Li X. Evaluation of ground source absorption heat pumps combined with borehole free cooling. Energy Conversion and Management, 2014, 79: 334–343
|
18 |
Eicker U, Vorschulze C. Potential of geothermal heat exchangers for office building climatisation. Renewable Energy, 2009, 34(4): 1126–1133
|
19 |
Lund J, Sanner B, Rybach L, Curtis R, Hellstrom G. Geothermal (ground source) heat pumps, a world overview. Oregon: Oregon Institute of Technology, 2004, available at the website of oit
|
20 |
Sanner B, Karytsas C, Mendrinos D, Rybach L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 2003, 32(4–6): 579–588
|
21 |
Pahud D, Belliardi M, Caputo P. Geocooling potential of borehole heat exchangers’ systems applied to low energy office buildings. Renewable Energy, 2012, 45: 197–204
|
22 |
REN 21. Renewables 2018 Global Status Report (Paris: REN21 Secretariat). 2018, available at the website of ren21
|
23 |
Li Z S, Zhang G Q, Li D M, Zhou J, Li L J, Li L X. Application and development of solar energy in the building industry and its prospects in China. Energy Policy, 2007, 35(8): 4121–4127
|
24 |
Crompton P, Wu Y. Energy consumption in China: past trends and future directions. Energy Economics, 2005, 27(1): 195–208
|
25 |
Yang L, Lam J C, Tsang C L. Energy performance of building envelopes in different climate zones in China. Applied Energy, 2008, 85(9): 800–817
|
26 |
Geng Y. Improve China’s sustainability targets. Nature, 2011, 477(7363): 162
|
27 |
Li X G, Chen Z H, Zhao J. Simulation and experiment on the thermal performance of U-vertical ground-coupled heat exchanger. Applied Thermal Engineering, 2006, 26(14–15): 1564–1571
|
28 |
Lanini S, Delaleux F, Py X, Olivès R, Nguyen D. Improvement of borehole thermal energy storage design based on experimental and modeling results. Energy and Building, 2014, 77: 393–400
|
29 |
Pahud D, Hellström G, Mazzarella L. DUCT GROUND HEAT STORAGE MODEL: Manual for Computer Code. Lund: University of Lund, 1989
|
30 |
Ingersoll L R, Plass H J. Theory of the ground pipe heat source for the heat pump. Heating, Piping, and Air Conditioning, 1948, 54(7): 339–348
|
31 |
Beier R A, Smith M D, Spitler J D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics, 2011, 40(1): 79–85
|
32 |
Kelly B. Nexant parabolic trough solar power plant systems analysis, task 2 comparison of wet and dry Rankine cycle heat rejection. Technical Report: National Renewable Energy Laboratory NREL/SR-550–40163, 2006
|
33 |
Semple L, Carriveau R, Ting D S K. A techno-economic analysis of seasonal thermal energy storage for green house applications. Energy and Building, 2017, 154: 175–187
|
/
〈 | 〉 |