REVIEW ARTICLE

Development and technical progress in large-scale circulating fluidized bed boiler in China

  • Zhong HUANG ,
  • Lei DENG ,
  • Defu CHE
Expand
  • State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Received date: 22 Jul 2019

Accepted date: 23 Oct 2019

Published date: 15 Dec 2020

Copyright

2020 Higher Education Press

Abstract

Circulating fluidized bed (CFB) boilers has realized the clean and efficient utilization of inferior coal like gangue and coal slime, high sulfur coal, anthracite, petroleum coke, oil shale and other resources. As a country with the largest amount of CFB boilers and the largest installed capacity in the world, China has 440 100–600 MWe CFB boilers with a total capacity of 82.29 GWe, including 227 units of 135 MWe, 95 units of 300 MWe, and 24 supercritical units. The statistics of typical 100–300 MWe CFB boilers showed that the average number of unplanned shut-down was only 0.37 times per year, among which the 135 MWe was 0.26 times per year and 300 MWe was 0.46 times per year. The auxiliary power ratio of some 300 MWe CFB boilers based on flow-pattern reconstruction can be reduced to about 4%, which is closed to the same level of pulverized coal (PC) boilers. This paper summarizes the development process and application status of China’s large-scale CFB boilers, analyzes the characteristics and technical performance of the iconic units, and introduces solutions to the problems such as water wall wear and bottom ash cooling.

Cite this article

Zhong HUANG , Lei DENG , Defu CHE . Development and technical progress in large-scale circulating fluidized bed boiler in China[J]. Frontiers in Energy, 2020 , 14(4) : 699 -714 . DOI: 10.1007/s11708-020-0666-3

Acknowledgments

This study was supported by the Beijing Nova Program (No. XX2018033).
1
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistical Press, 2018 (in Chinese)

2
Wang W, Li Z, Lyu J, Zhang H, Yue G, Ni W. An overview of the development history and technical progress of China’s coal-fired power industry. Frontiers in Energy, 2019, 13(3): 417–426

DOI

3
Wang W, Li B, Yao X, Lyu J, Ni W. Air pollutant control and strategy in coal-fired power industry for promotion of China’s emission reduction. Frontiers in Energy, 2019, 13(2): 307–316

DOI

4
Yue G, Cai R, Lu J, Zhang H. From a CFB reactor to a CFB boiler—the review of R&D progress of CFB coal combustion technology in China. Powder Technology, 2017, 316: 18–28

DOI

5
Jiang X, Han X, Cui Z. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5): 772–777

DOI

6
Zhou Q, Zaho Q, Zhou G, Wang H, Xu T, Hui S. Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace. Frontiers of Energy and Power Engineering in China, 2010, 4(3): 436–442

DOI

7
Chen W, Xu R. Clean coal technology development in China. Energy Policy, 2010, 38(5): 2123–2130

DOI

8
Chang S, Zhuo J, Meng S, Qin S, Yao Q. Clean coal technologies in China: current status and future perspectives. Engineering, 2016, 2(4): 447–459

DOI

9
Huang L, Hu J, Chen M, Zhang H. Impacts of power generation on air quality in China—part I: an overview. Resources, Conservation and Recycling, 2017, 121: 103–114

DOI

10
Na C, Yuan J, Xu Y, Hu Z. Penetration of clean coal technology and its impact on China’s power industry. Energy Strategy Reviews, 2015, 7(1): 1–8

DOI

11
Leckner B. Fluidized bed combustion: mixing and pollutant limitation. Progress in Energy and Combustion Science, 1998, 24(1): 31–61

DOI

12
Basu P. Combustion of coal in circulating fluidized-bed boilers: a review. Chemical Engineering Science, 1999, 54(22): 5547–5557

DOI

13
Koornneef J, Junginger M, Faaij A. Development of fluidized bed combustion—an overview of trends, performance and cost. Progress in Energy and Combustion Science, 2007, 33(1): 19–55

DOI

14
Butler J, Mohn N, Semedard J. CFB technology: Can the original clean coal technology continue to compete? In: Proceedings of Power Gen International, Nevada, USA, 2005

15
Basu P. Circulating Fluidized Bed Boilers: Design, Operation and Maintenance. Switzerland: Springer International Publishing, 2015

16
Yue G, Lu J, Yang H, Su H. Research on supercritical circulating fluidized bed boiler. In: Proceedings of the 11th International Conference on Fluidized Bed Technology (CFB-11), Beijing, China, 2014: 541–550

17
Lyu J, Yang H, Ling W, Nie L, Yue G, Li R, Chen Y, Wang S. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler. Frontiers in Energy, 2019, 13(1): 114–119

DOI

18
Liu X. The application of and prospects for fluidized-bed combustion technology in coal-mining areas in China. Energy, 1986, 11(11–12): 1209–1214

DOI

19
Lu J, Zhang J, Yue G, Liu Q, Lu X, Lu J, Zhao X, Liu Y, Yu L, Lin X, Li Z. The progress of the water cooled separator CFB boiler in China. In: Proceedings of the 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, 1999

20
Yue G, Yang H, Lu J, Zhang H. Latest development of CFB boilers in China. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 3–12

21
Yue G, Lu J, Zhang H, Yang H, Zhang J, Liu Q, Li Z, Joos E, Jaud P. Design theory of circulating fluidized bed boilers. In: Proceedings of the 18th International Conference on Fluidized Bed Combustion (FBC2005), Toronto, Canada, 2005: 135–146

22
Cheng L, Cen K, Luo Z. China’s 600 MWe CFB boiler—some issues in the development and its operation. In: 32nd Annual International Pittsburgh Coal Conference: Coal-Energy, Environment and Sustainable Development (IPCC 2015). The David L. Lawrence Convention Center Pittsburgh, USA, 2015

23
Yue G, Ling W, Nie L. China brings online the world’s first 600 MW supercritical CFB boiler. Cornerstone, 2015, 3(1): 43–47

24
Gauvillé P, Semedard J, Darling S. Experience from the 300 MWe CFB Demonstration plant in China. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 113–120

25
Li J, Mi J, Hao J, Yang S, Huang H, Ji H, Lu J, Yue G. Operational status of 300 MWe CFB boiler in China. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 243–246

26
Zhang P, Lu J, Yang H, Zhang J, Zhang H, Yue G. Heat transfer coefficient distribution in the furnace of a 300 MWe CFB boiler. In: Proceeding of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 167–171

27
Guo Q, Zheng X, Zhou Q, Nie L, Liu T, Hu X, Lu J. Operation experience and performance of the first 300 MWe CFB boiler developed by DBC in China. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 237–242

28
Yue G, Yang H, Nie L, Wang Y. Hydrodynamics of 300 MWe and 600 MW circulating fluidized bed boilers with asymmetric cyclone layout. In: Proceedings of the 9th International Conference on Fluidized Bed Combustion, Hamburg, Germany, 2008: 153–158

29
Li J, Wang W, Yang H, Lv J, Yue G. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure. Energy & Fuels, 2009, 23(5): 2565–2569

DOI

30
Li J, Zhang H, Yang H, Liu Q, Yue G. The mechanism of lateral solid transfer in a CFB riser with pant-legs structure. Energy & Fuels, 2010, 24(4): 2628–2633

DOI

31
Zhang R, Yang H, Hu N, Lu J, Wu Y. Experimental investigation and model validation of the heat flux profile in a 300 MW CFB boiler. Powder Technology, 2013, 246: 31–40

DOI

32
Sun X, Jiang M. Research and development of large capacity CFB boilers in TPRI. In: Proceeding of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 107–112

33
LiY, Nie L, Hu X, Yue G, Li W, Wu Y, Lu J, Che D. Structure and performance of a 600 MWe supercritical CFB boiler with water cooled panels. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 132–136

34
Yang H, Wirsum M, Yue G, Fett F, Xu Y. A six-parameter model to predict ash formation in a CFB boiler. Powder Technology, 2003, 134(1–2): 117–122

DOI

35
Yan J, Lu X, Wang Q, Kang Y, Li J, Zhou J, Zhang Y, Lv Z, Sun S. Experimental and numerical study on air flow uniformity in the isobaric windbox of a 600 MW supercritical CFB boiler. Applied Thermal Engineering, 2017, 122: 311–321

DOI

36
Wang X, Shuai D, Lyu Q. Experimental study on structural optimization of a supercritical circulating fluidized bed boiler with an annular furnace and six cyclones. Journal of Thermal Science, 2017, 26(5): 472–482

DOI

37
Yue G, Ling W, Lu J, Yang H, Xiao C, Nie L, Su H. Development and demonstration of the 600 MW supercritical CFB Boiler in Baima Power Plant. In: Proceedings of the 22nd International Conference on Fluidized Bed Conversion, Turku, Finland, 2015: 126–134

38
Cheng W, Song G, Zhou X, Guo Q, Zhou Q, Wang R. Study on operation characteristics of the Dongfang’s 350 MW supercritical CFB boiler. Dongfang Electric Review, 2016, 20: 38–42 (in Chinese)

39
Lu J, Zhang W, Yang H, Liu Q, Liu Z, Zhao Y. Design and development of a simple 660 MW ultra-supercritical circulating fluidized bed boiler. Proceedings of the CSEE, 2014, 34: 741–747 (in Chinese)

40
Tang G, Zhang M, Gu J, Wu Y, Yang H, Zhang Y, Wei G, Lyu J. Thermal-hydraulic calculation and analysis on evaporator system of a 660 MWe ultra-supercritical CFB boiler. Applied Thermal Engineering, 2019, 151: 385–393

DOI

41
Zhu S, Zhang M, Huang Y, Wu Y, Yang H, Lyu J, Gao X, Wang F, Yue G. Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit. Energy, 2019, 173: 352–363

DOI

42
Song C, Lyu J, Yang H, Wang S, Ling W, Yue G. Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology. Proceedings of the CSEE, 2018, 38(2): 338–347 (in Chinese)

43
Lv Q, Song G, Wang D, Wang X, Wang H. Study on the technology of a new 660 MW ultra-supercritical annular furnace circulating fluidized bed boiler. Proceedings of the CSEE, 2018, 38(2): 3022–3032 (in Chinese)

44
Electric Power Evaluation and Consultation Institute of China Electricity Council. National Electricity CFB Power Generation Promotion Organization. Power industry circulating fluidized bed power generation competition data of 2017. 2018: 1–17 (in Chinese)

45
Huang Z. Optimization Technologies of Circulating Fluidized Bed Boiler. Beijing: China Electric Power Press, 2019 (in Chinese)

46
Yang H, Yue G, Zhang H, Lu J. Update design and operation experience of CFB boilers with energy saving process in China. VGB Powertech, 2011, 91(7): 49–53

47
State Environmental Protection Administration of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Emission Standard of Air Pollutants for Thermal Power Plants (GB13223-2003). Beijing: Standardization Administration of the People’s Republic of China, 2003 (in Chinese)

48
Ministry of Environmental Protection of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Emission Standard of Air Pollutants for Thermal Power Plants (GB13223-2011). Beijing: Standardization Administration of the People’s Republic of China, 2011 (in Chinese)

49
Li J, Yang H, Wu Y, Lv J, Yue G. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them. Environmental Science & Technology, 2013, 47(12): 6681–6687

DOI

50
Ke X, Cai R, Zhang M, Miao M, Lyu J, Yang H. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices. Fuel Processing Technology, 2018, 181: 252–258

DOI

51
Liu C, Cai C, Lv J, Hao H, Su H, Geng R, Li J, Zang X. Research and application of ultra-low emission technology in large-scale CFB boilers burning low-rank coal. Electric Power, 2018, 51(8): 167–172 (in Chinese)

52
Xia Y, Cheng L, Huang R, Xu L, Wang Q, Luo Z. Anti-wear beam effects on water wall wear in a CFB boiler. Fuel, 2016, 181: 1179–1183

DOI

53
Xia Y, Cheng L, Yu C, Xu L, Wang Q, Fang M. Anti-wear beam effects on gas-solid hydrodynamics in a circulating fluidized bed. Particuology, 2015, 19: 173–184

DOI

54
Huang Z, Xiao P, Jiang Z, Sun X. Design and retrofit of large size circulating fluidized bed boiler air nozzle. In: Proceedings of the 21st International Conference on Fluidized Bed Combustion, Italy Naples, 2012: 38–43

55
Zhao X, Lu J, Yang J, Zhang Q, Dong F, Yu L, Yue G. Operational performance and optimization of a 465t/h CFB boiler in China. In: Proceedings of the 18th International Conference on Fluidized Bed Combustion (FBC2005), Toronto, Canada, 2005: 791–800

56
Lu X, Li Y. A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler. Journal of Thermal Science, 2000, 9(4): 381–384

DOI

57
Zeng B, Lu X, Gan L, Shu M. Development of a novel fluidized bed ash cooler for circulating fluidized bed boilers: experimental study and application. Powder Technology, 2011, 212(1): 151–160

DOI

58
Zeng B, Lu X, Liu H. Influence of CFB (circulating fluidized bed) boiler bottom ash heat recovery mode on thermal economy of units. Energy, 2010, 35(9): 3863–3869

DOI

59
Yang H, Lu J, Zhang H, Yue G, Guo Y. Coal ignition characteristics in CFB boiler. Fuel, 2005, 84(14–15): 1849–1853

DOI

60
Wang J, Zhao X, Li S, Yang H, Lu J, Yue G. Influence of coal ash components on attrition characteristics in circulating fluidized bed. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 739–744 (in Chinese)

61
Wang W, Li J J, Yang S, Si X, Yang H, Lu J, Yue G. Experimental study on heat transfer in a rolling ash cooler used in the CFB boiler. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China, 2009: 1147–1151

62
Su J, Hu N. Application of fluidization reconstruction energy-saving combustion technology on 300 MW CFB boiler. Advanced Materials Research, 2012, 516-517: 140–145

DOI

63
Li C. 350 MW supercritical CFB power plant thermal economic parameters optimization. Value Engineering, 2014, 33(18): 44–45 (in Chinese)

64
Sun X, Qi F, Xin Y, Yuan W, Gao Y, Hao R, Cao L, Guo A. Test study on combustion adjustment of 330 MW circulating fluidized bed boiler. Power Generation Technology, 2019, 40(3): 281–285 (in Chinese)

65
Zhang S, Cai F, Chen Y, Lu Y. Feasibility analysis of large CFB boiler mixed burning biomass fuels and urban solid waste. China Resources Comprehensive Utilization, 2017, 35(7): 64–68 (in Chinese)

Outlines

/