RESEARCH ARTICLE

Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming

  • Yuzhang WANG ,
  • Shilie WENG ,
  • Yiwu WENG
Expand
  • School of Mechanical Engineering, Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 15 Dec 2010

Accepted date: 22 Jan 2011

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

Cite this article

Yuzhang WANG , Shilie WENG , Yiwu WENG . Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming[J]. Frontiers in Energy, 2011 , 5(2) : 195 -206 . DOI: 10.1007/s11708-011-0148-8

1
.National Energy Technology Laboratory. Fuel Cell Handbook. 7th Ed. Technical Report DOE/NETL 2004/1206, Morgantown, WV (2002); available at: http://www.brennstoffzellen.rwth-aachen.de/Links/FCHandbook7.pdf.

2
Bavarsad P G. Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy, 2007, 32(17): 4591-4599

DOI

3
Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 2004, 138(1-2): 120-136

DOI

4
Colpan C O, Dincer I, Hamdullahpur F. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy, 2007, 32(7): 787-795

DOI

5
Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13-22

DOI

6
Haseli Y, Dincer I, Naterer G F. Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. International Journal of Hydrogen Energy, 2008, 33(20): 5811-5822

DOI

7
Sangtongkitcharoen W, Assabumrungrat S, Pavarajarn V, Laosiripojana N, Praserthdam P. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane. Journal of Power Sources, 2005, 142(1): 75-80

DOI

8
Wang Q S, Li L J, Wang C. Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane. Journal of Power Sources, 2009, 186(2): 399-407

DOI

9
Finnerty C M, Ormerod R M. Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane: influence of anode formulation, pre-treatment and operating conditions. Journal of Power Sources, 2000, 86(1-2): 390-394

DOI

10
Peters R, Dahl R, Klüttgen U, Palm C, Stolten D. Internal reforming of methane in solid oxide fuel cell systems. Journal of Power Sources, 2002, 106(1-2): 238-244

DOI

11
Seo Y S, Shirley A, Kolaczkowski S T. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. Journal of Power Sources, 2002, 108(1-2): 213-225

DOI

12
Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal, 2001, 82(1-3): 311-328

DOI

13
Clarke S H, Dicks A L, Pointon K, Smith T A, Swann A. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today, 1997, 38(4): 411-423

DOI

14
Zhu H Y, Kee R J. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 2003, 117(1-2): 61-74

DOI

15
Wang Y Z, Yoshiba F, Watanabe T, Weng S L. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC. Journal of Power Sources, 2007, 170(1): 101-110

DOI

16
Wang Y Z, Yoshiba F, Kawase M, Watanabe T. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. International Journal of Hydrogen Energy, 2009, 34(9): 3885-3893

DOI

17
Wang Y Z, Li Y X, Weng S L, Wang Y H. Numerical simulation of counter-flow spray saturator for humid air turbine cycle. Energy, 2007, 32(5): 852-860

DOI

18
Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. Journal of Power Sources, 2002, 110(1): 186-200

DOI

19
Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001, 93(1-2): 130-140

DOI

20
Hwang J J, Chen C K, Lai D Y. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC. Journal of Power Sources, 2005, 140(2): 235-242

DOI

21
Xu J, Froment G F. Methane steam reforming machination and water gas shift-I. Intrinsic kinetics. American Institute of Chemical Engineers, 1989, 35(1): 88-96

DOI

22
Costamagna P, Selimovic A, Del M B, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal, 2004, 102(1): 61-69

DOI

Outlines

/