Introduction
Tab.1 Photoreduction reactions of CO2 in aqueous solution at pH= 7 and their reduction potentials with reference to normal hydrogen electrode (NHE) at 25°C and 1 atm |
Reaction | Thermodynamics potential (V) vs. NHE |
---|---|
CO2 + 2H+ + 2e-->HCOOH | -0.61 |
CO2 + 4H+ + 4e-->HCHO+ H2O | -0.52 |
CO2 + 2H+ + 2e-->CO+ H2O | -0.48 |
CO2 + 6H+ + 6e-->CH3OH+ H2O | -0.38 |
CO2 + 12H+ + 12e-->C2H5OH+ 3H2O | -0.33 |
CO2 + 8H+ + 8e-->CH4 + 2H2O | -0.24 |
H2O ->1/2O2 + 2H+ + 2e- | +0.82 |
2H+ + 2e-->H2 | -0.41 |
Modification of pristine MOFs as photocatalysts
Tab.2 Performances of recent photocatalytic MOFs for CO2 photoreduction |
Functionalization | MOF | Irradiation | Solvent/sacrificial agent | Main product | Photocatalytic reactivity | Reaction time/h | Ref. |
---|---|---|---|---|---|---|---|
– | MIL-125(Ti) | UV | MeCN/TEOA | HCOO- | 2.41 mmol | 10 | [53] |
– | MIL-125(Ti) | Visible | 0 | ||||
NH2-functionalized linker | MIL-125(Ti)-NH2 | 8.14 mmol | |||||
NH2-functionalized linker | NH2‐UiO‐66(Zr) | Visible | MeCN/TEOA | HCOO- | 13.2 mmol | 10 | [93] |
(NH2)2‐UiO‐66(Zr) | 20.7 mmol | ||||||
NH2-modified with partial Ti cation substitution | NH2-UiO-66(Zr/Ti) | Visible | MeCN/TEOA BNAH | HCOO- | 22.23 mmol | 6 | [94] |
(NH2)2‐UiO‐66(Zr/Ti) | 31.57±1.64 mmol | ||||||
– | MIL-101(Fe) | Visible | MeCN/TEOA | HCOO- | 59.0 mmol | 8 | [95] |
NH2-functionalized linker | MIL-101(Fe)-NH2 | 178 mmol | |||||
– | MIL-53(Fe) | 29.7 mmol | |||||
NH2-functionalized linker | MIL-53(Fe)-NH2 | 46.5 mmol | |||||
– | MIL-88B(Fe) | 9.0 mmol | |||||
NH2-modified with partial metal ion substitution | MIL-88B(Fe)-NH2 | 30 mmol | |||||
NH2-modified with partial Ti cation substitution | NH2-UiO-66(Zr/Ti) | Visible | MeCN/TEOA | HCOO- | 3.4 mmol/mol | 10 | [96] |
NH2-UiO-66(Zr/Ti)-100-4 | 4.2 mmol/mol | ||||||
NH2-UiO-66(Zr/Ti)-120-16 | 5.8 mmol/mol | ||||||
Porphyrin- functionalized linker | Rh-PMOF-1(Zr) | Visible | MeCN/TEOA | HCOO- | 6.1 mmol/mmol | 18 | [97] |
Porphyrin- functionalized linker | Zn/PMOF | UV-visible | H2O vapor | CH4 | 10.43 mmol | 4 | [98] |
Porphyrin- functionalized linker | Al/PMOF | Visible | H2O/TEOA | CH3OH | 37.5 ppm /(g·h) | – | [99] |
Porphyrin- functionalized linker with partial Cu cation substitution | Cu-Al/PMOF | 262.6 ppm /(g·h) | |||||
Porphyrin- functionalized linker | MOF-525 | Visible | MeCN/TEOA | CO | 64.02 mmol /(g·h) | 6 | [100] |
CH4 | 6.2 mmol /(g·h) | ||||||
Porphyrin- functionalized linker with embedded Zn cations | MOF-525-Zn | CO | 111.7 mmol /(g·h) | ||||
CH4 | 11.64 mmol /(g·h) | ||||||
Porphyrin- functionalized linker with embedded Co cations | MOF-525-Co | CO | 200.6 mmol /(g·h) | ||||
CH4 | 36.76 mmol /(g·h) | ||||||
Porphyrin- functionalized linker | PCN-222 | Visible | MeCN/TEOA | HCOO- | 30 mmol | 10 | [101] |
Photosensitizer functionalization | Eu-Ru(phen)3-MOF | Visible | MeCN/TEA | HCOO- | 47 mmol | 10 | [102] |
Photosensitizer functionalization | UiO-67-ReI(CO)3(5,5′-dcbpy)Cl | Visible | MeCN/TEA | CO | TON= 5.0 | 6 | [103] |
H2 | TON= 0.5 | ||||||
CO | TON= 10.9 | 20 | |||||
H2 | TON= 2.5 | ||||||
– | ReI(CO)3(5,5′-dcbpy)Cl | CO | TON= 5.6 | 6 | |||
H2 | TON= 0.3 | ||||||
CO | TON= 7.0 | 20 | |||||
H2 | TON= 1.0 | ||||||
Photosensitizer functionalization | Zr6(O)4(OH)4[Re(CO)3Cl(bpydb)]6 | Visible | MeCN/TEA | CO | TON= 6.44 | 6 | [104] |
H2 | TON= 0.40 | 6 | |||||
Photosensitizer functionalization | UiO-67-ReI(CO)3(5,5′-dcbpy)Cl | Visible | TEA | CO | 0.5 mmol/(g·h) | 6 | [52] |
UiO-67-ReI(CO)3(5,5′-dcbpy)Cl-NH2 (33% (mol)) | CO | 1.5 mmol/(g·h) | 6 | ||||
Photosensitizer functionalization | UiO-67-Cp*Rh(5,5′- dcbpy)Cl2 (10%) | Visible | ACN/TEOA | HCOO- | TON= 47 | 10 | [105] |
H2 | TON= 36 | ||||||
– | Cp*Rh(5,5′- dcbpy)Cl2 | HCOO- | TON= 42 | ||||
H2 | TON= 38 | ||||||
– | [Ru(bpy)3]Cl2 | HCOO- | TON= 125 | ||||
H2 | TON= 55 | ||||||
Photosensitizer functionalization | MOF-253-Ru(CO)2Cl2 | Visible | MeCN/TEOA | HCOO– | 0.67 mmol | 8 | [106] |
CO | 1.86 mmol | ||||||
H2 | 0.09 mmol | ||||||
Ru(bpy)2Cl2- sensitized MOF-253-Ru(CO)2Cl2 | HCOO– | 4.84 mmol | |||||
CO | 1.85 mmol | ||||||
H2 | 0.72 mmol | ||||||
MOF-253-Ru(bpy) 2Cl2 | HCOO– | 0.46 mmol | |||||
CO | 0.21 mmol | ||||||
H2 | 0.07 mmol | ||||||
– | Ru(bpy)2Cl2 | HCOO– | 0.27 mmol | ||||
CO | 0.18 mmol | ||||||
H2 | 0 mmol | ||||||
Photosensitizer functionalization | Y[Ir(ppy)2(4,4′‐dcbpy)]2[OH] | Visible | MeCN/TEOA | HCOO– | 118.8 mmol/(g·h) | 6 | [107] |
Photosensitizer functionalization | [Cd2[Ru(4,4’-dcbpy)3]·12H2O]n nanoflower | Visible | MeCN/TEOA | HCOO– | 77.2 mmol/(g·h) | 8 | [108] |
[Cd2[Ru(4,4’-dcbpy)3]·12H2O]n microflake | 52.7 mmol/(g·h) | ||||||
[Cd2[Ru(4,4’-dcbpy)3]·12H2O]n bulk crystals | 30.6 mmol/(g·h) | ||||||
Photosensitizer functionalization | [Cd3[Ru(5,5′-dcbpy)3]2·2(Me2NH2)]n | Visible | MeCN/TEOA | HCOO– | 67.5 mmol/(g·h) | 6 | [109] |
[Cd[Ru(bpy)(4,4′-dcbpy)2]·3H2O]n | 71.7 mmol/(g·h) | ||||||
Catechol- functionalized linker | UiO-66-CrIIIcatbdc | Visible | MeCN/TEOA/BNAH | HCOO– | TON= 11.22±0.37 | 6 | [110] |
UiO-66-GaIIIcatbdc | TON= 6.14±0.22 | ||||||
Anthracene- functionalized linker | NNU-28 | Visible | MeCN/TEOA | HCOO– | 183.3 mmol/(h·mmol) | 10 | [111] |
Notes: ACN–acetonitrile; BNAH–1-benzyl-1,4-dihydronicotinamide; bpy–2,2’-bipyridine; catbdc–2,3-dihydroxyterephthalic acid; Cp*–pentamethylcyclopentadiene; MeCN–acetonitrile; phen–phenanthroline; TEA–trimethylamine; TEOA–triethanolamine; TON–total turnover number; 5,5′-dcbpy–2,2’-bipyridine-5,5′-dicarboxylic acid; bpydb–4,4’-(2,2’-bipyridine-5,5′-diyl)dibenzoate; ppy–2-phenylpyridine; 4,4’-dcbpy–2,2’-bipyridine-4,4’-dicarboxylate |
Metal cluster nodes
Modification of organic linkers
Amine functionalization
Utilization of porphyrin-based organic linkers
![](https://academic.hep.com.cn//article\2019\2095-1701/2095-1701-13-2-221/thumbnail/fep-19011-zl-fig6.jpg)
Fig.6 Left: Amount of HCOO- produced as a function of visible light irradiation time over PCN-222 (a), H2TCPP (b), no PCN-222 (c), no TEOA (d), and no CO2 (e). Right: 13C Nuclear magnetic resonance (NMR) spectra for the product obtained from reaction with 13CO2 (a) or 12CO2 (b) (Reproduced with permission from Ref. [101]. Copyright 2015, American Chemical Society) |
Photosensitizer functionalization
![](https://academic.hep.com.cn//article\2019\2095-1701/2095-1701-13-2-221/thumbnail/fep-19011-zl-fig8.jpg)
Fig.8 Amount of HCOO– produced as a function of irradiation time of visible light over (a) nanoflowers, (b) microcrystals, and (c) bulk crystals of the Ru-MOF ([Cd2[Ru(4,4’-dcbpy)3]·12H2O]n). (d) visible light irradiation without a sample (Inset images (from top to bottom) show nanoflowers, microcrystals and bulk crystals of the Ru-MOF, respectively. Reproduced with permission from reference [108]. Copyright 2015, Royal Society of Chemistry. ) |
MOF composite photocatalysts
Tab.3 Performances of recent photocatalytic MOF composites for CO2photoreduction |
Strategy | MOF composite | Irradiation | Solvent/ sacrificial agent | Main product | Photocatalytic reactivity | Reaction time/h | Ref. |
---|---|---|---|---|---|---|---|
Photosensitizer incorporation | Co-ZIF-9/[Ru(bpy)3]Cl2·6H2O | Visible | MeCN/H2O/ TEOA | CO | 41.8 mmol | 0.5 | [57] |
H2 | 29.9 mmol | ||||||
Co-MOF-74/[Ru(bpy)3]Cl2·6H2O | CO | 11.7 mmol | |||||
H2 | 7.3 mmol | ||||||
Mn-MOF-74/[Ru(bpy)3]Cl2·6H2O | CO | 1.5 mmol | |||||
H2 | 2.9 mmol | ||||||
Zn-ZIF-8/[Ru(bpy)3]Cl2·6H2O | CO | 2.1 mmol | |||||
H2 | 2.4 mmol | ||||||
Zr-UiO-66-NH2/[Ru(bpy)3]Cl2·6H2O | CO | 1.2 mmol | |||||
H2 | 2.2 mmol | ||||||
Co-ZIF-67 /[Ru(bpy)3]Cl2·6H2O | Visible | MeCN/H2O/TEOA | CO | 29.6 mmol | 0.5 | [59] | |
H2 | 14.8 mmol | ||||||
Zn-ZIF-9/[Ru(bpy)3]Cl2·6H2O | CO | 1.8 mmol | |||||
H2 | 2.0 mmol | ||||||
Cu-HKUST-1/[Ru(bpy)3]Cl2·6H2O | CO | 1.2 mmol | |||||
H2 | 1.5 mmol | ||||||
Fe-MIL-101-NH2/[Ru(bpy)3]Cl2·6H2O | CO | 4.7 mmol | |||||
H2 | 2.1 mmol | ||||||
Zr-UiO-66-NH2/[Ru(bpy)3]Cl2·6H2O | CO | 0.9 mmol | |||||
H2 | 1.2 mmol | ||||||
UiO-67-Mn(5,5′‐dcbpy) (CO)3Br)/Ru(dmb)3(PF6)2 | Visible | DMF/TEOA/ BNAH | HCOO– | TON= 50 | 4 | [58] | |
TON= 110 | 18 | ||||||
UiO-67-Mn(5,5′‐dcbpy)(CO)3Br) (without a photosensitizer) | TON= 18 | 18 | |||||
Mn(5,5′‐dcbpy)(CO)3Br)/ Ru(dmb)3(PF6)2 | TON= 32 | 4 | |||||
TON= 57 | 18 | ||||||
Mn(bpy)(CO)3Br)/Ru(dmb)3(PF6)2 | TON= 35 | 4 | |||||
TON= 70 | 18 | ||||||
UiO-67-5,5′‐dcbpy)/Ru(dmb)3(PF6)2 | TON= 38 | 18 | |||||
[Ru(dmb)3]2+ | HCOO– | TON= 33 | 18 | ||||
Semiconductor incorporation | ZIF-8/TiO2 (ZIF-8 growth step on TiO2 film was repeated twice) | UV | H2O vapor | CO | 0.53 mmol/(g·h) | 5 | [124] |
CH4 | 0.18 mmol/(g·h) | ||||||
ZIF-8/Ti/TiO2 nanotube | UV-visible | Na2SO4 (0.1 mol L-1) | C2H5OH | 10 mmol/L | 3 | [125] | |
CH3OH | 0.7 mmol/L | ||||||
Co-ZIF-9/TiO2 (mass ratio of Co-ZIF-9 in composite is 0.03) | UV-visible | H2O vapor | CO | 8.79 mmol | 10 | [54] | |
CH4 | 0.99 mmol | ||||||
H2 | 1.30 mmol | ||||||
TiO2 | CO | 3.58 mmol | |||||
CH4 | 0.60 mmol | ||||||
H2 | 0.63 mmol | ||||||
Co-ZIF-9 | CO | 0 | |||||
CH4 | 0 | ||||||
H2 | 0 | ||||||
Physical mixture of TiO2 and Co-ZIF-9 with the mass ratio of 0.03:0.97 | CO | 3.86 mmol | |||||
CH4 | 0.42 mmol | ||||||
H2 | 0.56 mmol | ||||||
Cu-BTC/TiO2 | UV | H2O vapor | CH4 | 2.64 mmol/(g TiO2·h) | 4 | [126] | |
TiO2 | CH4 | 0.52 mmol/(g TiO2·h) | |||||
H2 | 2.29 mmol/(g TiO2·h) | ||||||
Cu-BTC | CH4 | 0 | |||||
H2 | 0 | ||||||
Cu-BTC/TiO2 (molar ratio of Cu-BTC to TiO2 is 3.33) | N/A | CO2/H2O vapor | CO | 256.38 mmol/(g TiO2·h) | 8 | [127] | |
TiO2 | 11.48 mmol/(gTiO2·h) | ||||||
Cu-BTC | 0 | ||||||
CPO-27-Mg/TiO2 | UV | H2O vapor | CO | 40.9 mmol/g | 10 | [128] | |
CH4 | 23.5 mmol/g | ||||||
TiO2 | CO | 22.5 mmol/g | |||||
CH4 | 13.7 mmol/g | ||||||
CPO-27-Mg | CO | 0 | |||||
CH4 | 0 | ||||||
Physical mixture of TiO2 and CPO-27-Mg with the ratio of 6:4 | H2 | 8.5 mmol/g | |||||
CO | 18.9 mmol/g | ||||||
CH4 | 7.1 mmol/g | ||||||
NH2-UiO-66/TiO2 (with 19%(wt) NH2-UiO-66) | UV-visible | CO2/H2 | CO | 3.74 mmol/(g·h) | [129] | ||
NH2-UiO-66/TiO2 (19.5%(wt)NH2-UiO-66) | 4.24 mmol/(g·h) | ||||||
NH2-UiO-66/TiO2 (24.5%(wt) NH2-UiO-66) | 3.37 mmol/(g·h) | ||||||
NH2-UiO-66/TiO2 (36.8%(wt) NH2-UiO-66) | 2.85 mmol/(g·h) | ||||||
TiO2 | 2.85 mmol/(g·h) | ||||||
NH2-UiO-66 | 1.50 mmol/(g·h) | ||||||
Co-ZIF-9/CdS | Visible | MeCN/H2O /TEOA/bpy | CO | 50.4 mmol | 1 5 | [130] | |
H2 | 11.1 mmol | ||||||
Co-MOF-74/CdS | CO | 39.6 mmol | |||||
H2 | 7.7 mmol | ||||||
Mn-MOF-74/CdS | CO | 1.0 mmol | |||||
H2 | 2.0 mmol | ||||||
Zn-ZIF-8/CdS | CO | 0.6 mmol | |||||
H2 | 0.6 mmol | ||||||
Zr-UiO-66-NH2/CdS | CO | 0.4 mmol | |||||
H2 | 0.3 mmol | ||||||
CdS | CO | 0.5 mmol | |||||
H2 | 0.6 mmol | ||||||
Co-ZIF-9 | CO | 0 | |||||
H2 | 0 | ||||||
UiO-66-NH2/Cd0.2Zn0.8S (10%(wt)UiO-66-NH2) | Visible | Na2S/Na2SO3 | H2 | 4591.6 mmol/(g·h) | [55] | ||
CH3OH | 4.1 mmol/(g·h) | ||||||
UiO-66-NH2/Cd0.2Zn0.8S (20%(wt)UiO-66-NH2) | H2 | 5846.5 mmol/(g·h) | |||||
CH3OH | 6.8 mmol/(g·h) | ||||||
UiO-66-NH2/Cd0.2Zn0.8S (30%(wt)UiO-66-NH2) | H2 | 5235.9 mmol/(g·h) | |||||
CH3OH | 5.9 mmol/(g·h) | ||||||
UiO-66-NH2/Cd0.2Zn0.8S (40%(wt)UiO-66-NH2) | H2 | 4922.7 mmol/(g·h) | |||||
CH3OH | 5.3 mmol/(g·h) | ||||||
Cd0.2Zn0.8S | H2 | 2804.2 mmol/(g·h) | |||||
CH3OH | 2.0 mmol/(g·h) | ||||||
UiO-66-NH2 | H2 | 0 | |||||
CH3OH | 0 | ||||||
Co-ZIF-9/mesoporous g-C3N4 | Visible | MeCN/H2O /TEOA/bpy | CO | 20.8 mmol | 2 | [131] | |
H2 | 3.3 mmol | ||||||
Co-ZIF-9 | CO | 0 | |||||
H2 | 0 | ||||||
g-C3N4 | CO | 0 | |||||
H2 | 0 | ||||||
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 10) | UV-visible | CO2/H2O vapor | CH3OH | 0.64 mmol/(g·h) | 1 | [56] | |
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 8) | 0.75 mmol/(g·h) | ||||||
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 5) | 0.45 mmol/(g·h) | ||||||
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 2) | 0.31 mmol/(g·h) | ||||||
ZIF-8/g-C3N4 nanotubes (molar ratio of g-C3N4 nanotubes to ZIF-8 is 1) | 0.16 mmol/(g·h) | ||||||
g-C3N4 nanotubes | 0.49 mmol/(g·h) | ||||||
Bulk g-C3N4 | 0.24 mmol/(g·h) | ||||||
ZIF-8 nanocrystals | 0 | ||||||
UiO-66/g-C3N4 nanosheets | Visible | MeCN/TEOA | CO | 9.9 mmol/(g g-C3N4·h) | 6 | [132] | |
UiO-66/bulk g-C3N4 | 3.2 mmol/(g g-C3N4·h) | ||||||
g-C3N4 nanosheets | 2.9 mmol/(g g-C3N4·h) | ||||||
bulk g-C3N4 | 2.0 mmol/(g g-C3N4·h) | ||||||
UiO-66 | 0 | ||||||
BIF-20/g-C3N4 nanosheets (10%(wt) g-C3N4 nanosheets) | Visible | MeCN/TEOA | CO | 3.42 mmol | 6 | [133] | |
CH4 | 1.12 mmol | ||||||
BIF-20/g-C3N4 nanosheets (15%(wt) g-C3N4 nanosheets) | CO | 4.86 mmol | |||||
CH4 | 1.45 mmol | ||||||
BIF-20/g-C3N4 nanosheets (20%(wt) g-C3N4 nanosheets) | CO | 6.12 mmol | |||||
CH4 | 1.76 mmol | ||||||
BIF-20/g-C3N4 nanosheets (25%(wt) g-C3N4 nanosheets) | CO | 5.14 mmol | |||||
CH4 | 1.51 mmol | ||||||
ZIF-8/Zn2GeO4 (25%(wt) ZIF-8) | N/A | Na2SO3 | CH3OH | 0.22 mmol/(g·h) | 11 | [134] | |
Metal incorporation | Pt/NH2-MIL-125(Ti) | Visible | MeCN/TEOA | HCOO– | 12.96 mmol | 8 | [135] |
H2 | 235 mmol | ||||||
Au/NH2-MIL-125(Ti) | HCOO– | 9.06 mmol | |||||
H2 | 40.2 mmol | ||||||
NH2-MIL-125(Ti) | HCOO– | 10.75 mmol | |||||
H2 | 0 | ||||||
1%(wt) Co/NH2-MIL-125(Ti) | Visible | MeCN/TEOA | HCOO– | 384.2 mmol | 10 | [136] | |
2%(wt) Co/NH2-MIL-125(Ti) | 321.8 mmol | ||||||
3%(wt) Co/NH2-MIL-125(Ti) | 239.4 mmol | ||||||
NH2-MIL-125(Ti) | 162.8 mmol | ||||||
Ag⊂Re3-MOF (16 nm thick Re3-MOF) | Visible | MeCN/TEOA | CO | TON ≈ 2.8 | 48 | [137] | |
ReI(CO)3(5,5′‐dcbpy)Cl | TON ≈ 1.7 | ||||||
Carbon materials incorporation | 1%(wt) UiO-66-NH2/graphene | Visible | DMF/TEOA/H2O | HCOO– | 12.3 mmol | 4 | [138] |
CH4 | 0.25 mmol | ||||||
H2 | 15.2 mmol | ||||||
1.5%(wt) UiO-66-NH2/graphene | HCOO– | 21.2 mmol | |||||
CH4 | 0.59 mmol | ||||||
H2 | 13.9 mmol | ||||||
2%(wt) UiO-66-NH2/graphene | HCOO– | 33.5 mmol | |||||
CH4 | 0.90 mmol | ||||||
H2 | 13.2 mmol | ||||||
2.5%(wt) UiO-66-NH2/graphene | HCOO– | 14.9 mmol | |||||
CH4 | 0.51 mmol | ||||||
H2 | 15.1 mmol | ||||||
3%(wt) UiO-66-NH2/graphene | HCOO– | 8.6 mmol | |||||
CH4 | 0.19 mmol | ||||||
H2 | 16.8 mmol | ||||||
UiO-66-NH2 | HCOO– | 3.1 mmol | |||||
CH4 | 0.11 mmol | ||||||
H2 | 16.9 mmol | ||||||
Graphene | HCOO– | 0 | |||||
CH4 | 0 | ||||||
H2 | 0 | ||||||
UiO-66-NH2/graphene (hydrothermal synthesis) | HCOO | 16.1 mmol | |||||
H2 | 20.4 mmol | ||||||
Al-PMOF/5%(wt) NH2-rGO | Visible | MeCN/TEOA | HCOO– | 685.6 mmol/(g·h) | 6 | [139] | |
Al-PMOF/15%(wt) NH2-rGO | 479.8 mmol/(g·h) | ||||||
Al-PMOF/25%(wt) NH2-rGO | 476.4 mmol/(g·h) | ||||||
Al-PMOF | 165.3 mmol/(g·h) |
Notes: CAN–acetonitrile; BNAH–1-benzyl-1,4-dihydronicotinamide; bpy–2,2’-bipyridine; BTC–benzene-1,3,5-tricarboxylate; Cp*–pentamethylcyclopentadiene; DMF–N, N-dimethylformamide; MeCN–acetonitrile; phen–phenanthroline; TEA–trimethylamine; TEOA–triethanolamine; TON–total turnover number; 5,5′‐dcbpy–2,2’-bipyridine-5,5′-dicarboxylic acid; bpydb –4,4’-(2,2’-bipyridine-5,5′-diyl)dibenzoate; ppy–2-phenylpyridine; 4,4′‐dcbpy–2,2’-bipyridine-4,4’-dicarboxylate; dmb–4,4′-dimethyl-2,2′-bipyridine |
MOF composites incorporated with photosensitizers
![](https://academic.hep.com.cn//article\2019\2095-1701/2095-1701-13-2-221/thumbnail/fep-19011-zl-fig9.jpg)
Fig.9 TON of HCOO– as a function of reaction time over UiO-67-Mn(bpy)(CO)3Br (red), Mn(bpy)(CO)3Br (green), Mn(bpydc)(CO)3Br (blue), UiO-67-bpydc (black), no added Mncomplex or MOF (only Ru2+ , brown), and UiO-67-Mn(bpy)(CO)3Br without added Ru2+ (gray) (Reproduced with permission from Ref. [58]. Copyright 2015, American Chemical Society) |
MOF composites incorporated with semiconductors
MOF-TiO2 composites
![](https://academic.hep.com.cn//article\2019\2095-1701/2095-1701-13-2-221/thumbnail/fep-19011-zl-fig11.jpg)
Fig.11 CO2 photoreduction analysis of TiO2 and HKUST-1/TiO2 composites (CO yield over the HKUST-1/TiO2 composites and pure TiO2) Inset image: CO yield peak time of the HKUST-1/TiO2 composites and pure TiO2 (Reproduced with permission from Ref. [127]. Copyright 2017, American Chemical Society) |